Time periodic solutions of the diffusive Nicholson blowflies equation with delay

被引:6
作者
Pang, Peter Y. H. [1 ]
Wang, Yifu [2 ]
机构
[1] Natl Univ Singapore, Dept Math, Singapore 119076, Singapore
[2] Beijing Inst Technol, Dept Math, Beijing 100081, Peoples R China
关键词
Nonlinear diffusion equation; Periodic solution; Time delay; Attractivity; DEGENERATE PARABOLIC EQUATIONS; TRAVELING WAVE-FRONTS; GLOBAL ATTRACTIVITY; BOUNDARY-CONDITION; EXISTENCE; UNIQUENESS; COEXISTENCE; STABILITY; DYNAMICS; MODEL;
D O I
10.1016/j.nonrwa.2014.07.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the Nicholson blowflies equation with nonlinear diffusion and time delay subject to the homogeneous Dirichlet boundary condition in a bounded domain. We establish the existence of nontrivial periodic solutions of the time-periodic problem under general conditions by constructing a coupled upper-lower solution pair and by applying the Schauder fixed point theorem. The attractivity of the periodic solutions is also discussed by using the monotone iteration method. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:44 / 53
页数:10
相关论文
共 42 条
[1]   Coexistence and optimal control problems for a degenerate predator-prey model [J].
Allegretto, W. ;
Fragnelli, G. ;
Nistri, P. ;
Papini, D. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 378 (02) :528-540
[2]   LOCAL EXISTENCE AND UNIQUENESS OF SOLUTIONS OF DEGENERATE PARABOLIC EQUATIONS [J].
ANDERSON, JR .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (01) :105-143
[3]  
[Anonymous], 1999, Dynam. Systems Appl
[4]   Periodic solutions for a class of degenerate evolution problems [J].
Badii, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 44 (04) :499-508
[5]   Nicholson's blowflies differential equations revisited: Main results and open problems [J].
Berezansky, L. ;
Braverman, E. ;
Idels, L. .
APPLIED MATHEMATICAL MODELLING, 2010, 34 (06) :1405-1417
[6]   CONTINUITY OF WEAK SOLUTIONS TO A GENERAL POROUS-MEDIUM EQUATION [J].
DIBENEDETTO, E .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1983, 32 (01) :83-118
[7]  
DiBenedetto E., 1993, Degenerate Parabolic Equations, DOI DOI 10.1007/978-1-4612-0895-2
[9]   Asymptotic periodicity in diffusive logistic equations with discrete delays [J].
Feng, W ;
Lu, X .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (02) :171-178
[10]   Dynamics of the diffusive Nicholson's blowflies equation with distributed delay [J].
Gourley, SA ;
Ruan, S .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2000, 130 :1275-1291