An adaptive least squares mixed finite element method for the stress-displacement formulation of linear elasticity

被引:29
作者
Cai, ZQ
Korsawe, J
Starke, G
机构
[1] Univ Hannover, Inst Angew Math, D-30167 Hannover, Germany
[2] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
关键词
linear elasticity; stress displacement;
D O I
10.1002/num.20029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A least-squares mixed finite element method for linear elasticity, based on a stress-displacement formulation, is investigated in terms of computational efficiency. For the stress approximation quadratic Raviart-Thomas elements are used and these are coupled with the quadratic nonconforming finite element spaces of Fortin and Soulie for approximating the displacement. The local evaluation of the least-squares functional serves as an a posteriori error estimator to be used in an adaptive refinement algorithm. We present computational results for a benchmark test problem of planar elasticity including nearly incompressible material parameters in order to verify the effectiveness of our adaptive strategy. For comparison, conforming quadratic finite elements are also used for the displacement approximation showing convergence orders similar to the nonconforming case, which are, however, not independent of the Lame parameters. (C) 2004 Wiley Periodicals. Inc.
引用
收藏
页码:132 / 148
页数:17
相关论文
共 17 条
[1]  
Arnold D., 1984, Jpn. J. Appl. Math., V1, P347, DOI [/10.1007/BF03167064, DOI 10.1007/BF03167064]
[2]  
BERNDT M., 1997, Electron. Trans. Numer. Anal., V6, P35
[3]   Finite element methods of least-squares type [J].
Bochev, PB ;
Gunzburger, MD .
SIAM REVIEW, 1998, 40 (04) :789-837
[4]   ERROR INDICATORS FOR MIXED FINITE-ELEMENTS IN 2-DIMENSIONAL LINEAR ELASTICITY [J].
BRAESS, D ;
KLAAS, O ;
NIEKAMP, R ;
STEIN, E ;
WOBSCHAL, F .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1995, 127 (1-4) :345-356
[5]  
Braess D., 2001, FINITE ELEMENTS THEO
[6]  
Brenner S.C., 2002, MATH THEORY FINITE E
[7]   2 FAMILIES OF MIXED FINITE-ELEMENTS FOR 2ND ORDER ELLIPTIC PROBLEMS [J].
BREZZI, F ;
DOUGLAS, J ;
MARINI, LD .
NUMERISCHE MATHEMATIK, 1985, 47 (02) :217-235
[8]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15
[9]  
CAI Z, IN PRESS SIAM J NUME
[10]   First-order system least squares (FOSLS) for planar linear elasticity: Pure traction problem [J].
Cai, ZQ ;
Manteuffel, TA ;
McCormick, SF ;
Parter, SV .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (01) :320-335