Self-assembly of the Discrete Sierpinski Carpet and Related Fractals

被引:0
|
作者
Kautz, Steven M. [1 ]
Lathrop, James I. [1 ]
机构
[1] Iowa State Univ, Ames, IA 50011 USA
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
It is well known that the discrete Sierpinski triangle can be defined as the nonzero residues modulo 2 of Pascal's triangle, and that from this definition one can construct a tileset with which the discrete Sierpinski triangle self-assembles in Winfree's tile assembly model. In this paper we introduce an infinite class of discrete self-similar fractals (a class that includes both the Sierpinski triangle and the Sierpinski carpet) that are defined by the residues modulo a prime p of the entries in a two-dimensional matrix obtained from a simple recursive equation. We prove that every fractal in this class self-assembles and that there is a uniform procedure that generates the corresponding tilesets. As a special case we show that the discrete Sierpinski carpet self-assembles using a set of 30 tiles.
引用
收藏
页码:78 / 87
页数:10
相关论文
共 50 条
  • [1] Strict self-assembly of discrete Sierpinski triangles
    Lathrop, James I.
    Lutz, Jack H.
    Summers, Scott M.
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (4-5) : 384 - 405
  • [2] Strict self-assembly of discrete Sierpinski triangles
    Lathrop, James I.
    Lutz, Jack H.
    Summers, Scott M.
    COMPUTATION AND LOGIC IN THE REAL WORLD, PROCEEDINGS, 2007, 4497 : 455 - +
  • [3] Self-assembly of discrete self-similar fractals
    Matthew J. Patitz
    Scott M. Summers
    Natural Computing, 2010, 9 : 135 - 172
  • [4] Self-assembly of discrete self-similar fractals
    Patitz, Matthew J.
    Summers, Scott M.
    NATURAL COMPUTING, 2010, 9 (01) : 135 - 172
  • [5] Self-assembly of Discrete Self-similar Fractals
    Patitz, Matthew J.
    Summers, Scott M.
    DNA COMPUTING, 2009, 5347 : 156 - 167
  • [6] Simulation Studies of the Self-Assembly of Halogen-Bonded Sierpinski Triangle Fractals
    Zhang Zhen
    Xie Wen-Jun
    Yang Yi Isaac
    Sun Geng
    Gao Yi-Qin
    ACTA PHYSICO-CHIMICA SINICA, 2017, 33 (03) : 539 - +
  • [7] Approximate Self-Assembly of the Sierpinski Triangle
    Jack H. Lutz
    Brad Shutters
    Theory of Computing Systems, 2012, 51 : 372 - 400
  • [8] Approximate Self-Assembly of the Sierpinski Triangle
    Lutz, Jack H.
    Shutters, Brad
    THEORY OF COMPUTING SYSTEMS, 2012, 51 (03) : 372 - 400
  • [9] Approximate Self-assembly of the Sierpinski Triangle
    Lutz, Jack H.
    Shutters, Brad
    PROGRAMS, PROOFS, PROCESSES, 2010, 6158 : 286 - 295
  • [10] Algorithmic self-assembly of DNA Sierpinski triangles
    Rothemund, PWK
    Papadakis, N
    Winfree, E
    PLOS BIOLOGY, 2004, 2 (12) : 2041 - 2053