Stability results for properly quasi convex vector optimization problems

被引:7
作者
Li, X. B. [1 ,2 ]
Wang, Q. L. [2 ]
Lin, Z. [2 ]
机构
[1] Chongqing Univ, Coll Comp Sci, Chongqing 630044, Peoples R China
[2] Chongqing Jiaotong Univ, Coll Sci, Chongqing, Peoples R China
基金
中国国家自然科学基金;
关键词
stability analysis; vector optimization problems; efficiency; Painleve-Kuratowski convergence; proper quasi convexity; 90C31; 90C29; 49K40; EPSILON-VARIATIONAL PRINCIPLE; CONVERGENCE;
D O I
10.1080/02331934.2013.860529
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we discuss the stability of the sets of (weak) minimal points and (weak) efficient points of vector optimization problems. Assuming that the objective functions are (strictly) properly quasi convex, and the data ofthe approximate problems converges to the data of the original problems in the sense of Painleve-Kuratowski, we establish the Painleve-Kuratowski set convergence of the sets of (weak) minimal points and (weak) efficient points of the approximate problems to the corresponding ones of original problem. Our main results improve and extend the results of the recent papers.
引用
收藏
页码:1329 / 1347
页数:19
相关论文
共 50 条
  • [31] QUASI-SUBGRADIENT METHODS WITH BREGMAN DISTANCE FOR QUASI-CONVEX FEASIBILITY PROBLEMS
    Hu, Yaohua
    Li, Jingchao
    Liu, Yanyan
    Yu, Carisa Kwok Wai
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2024, 8 (03): : 381 - 395
  • [32] Adaptive subgradientmethod for the split quasi-convex feasibility problems
    Nimana, Nimit
    Farajzadeh, Ali P.
    Petrot, Narin
    OPTIMIZATION, 2016, 65 (10) : 1885 - 1898
  • [33] STOCHASTIC QUASI-SUBGRADIENT METHOD FOR STOCHASTIC QUASI-CONVEX FEASIBILITY PROBLEMS
    LI, Gang
    LI, Minghua
    Hu, Yaohua
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (04): : 713 - 725
  • [34] Existence of ∈-Minima for Vector Optimization Problems
    K. R. Kazmi
    Journal of Optimization Theory and Applications, 2001, 109 : 667 - 674
  • [35] Existence and Optimality Conditions for Approximate Solutions to Vector Optimization Problems
    Gao, Y.
    Hou, S. H.
    Yang, X. M.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 152 (01) : 97 - 120
  • [36] On nondifferentiable and nonconvex vector optimization problems
    Ansari, QH
    Yao, JC
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2000, 106 (03) : 475 - 488
  • [37] Existence of ε-minima for vector optimization problems
    Kazmi, KR
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2001, 109 (03) : 667 - 674
  • [38] An interactive approach for vector optimization problems
    Hussein, ML
    ElGhaffar, FSA
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1996, 89 (01) : 185 - 192
  • [39] Some Remarks On Vector Optimization Problems
    K. R. Kazmi
    Journal of Optimization Theory and Applications, 1998, 96 : 133 - 138
  • [40] Existence and Optimality Conditions for Approximate Solutions to Vector Optimization Problems
    Y. Gao
    S. H. Hou
    X. M. Yang
    Journal of Optimization Theory and Applications, 2012, 152 : 97 - 120