Alternative Electron Transport Layer Based on Al-Doped ZnO and SnO2 for Perovskite Solar Cells: Impact on Microstructure and Stability

被引:40
|
作者
Spalla, Manon [1 ,2 ]
Planes, Emilie [1 ]
Perrin, Lara [1 ]
Matheron, Muriel [2 ]
Berson, Solenn [2 ]
Flandin, Lionel [1 ]
机构
[1] Univ Savoie Mt Blanc, Univ Grenoble Alpes, CNRS, Grenoble INP,LEPMI, F-38000 Grenoble, France
[2] Univ Grenoble Alpes, CEA, LITEN, INES, F-73375 Le Bourget Du Lac, France
关键词
perovskite solar cell; electron transport layer; stability; microstructure; morphology; degradation mechanisms; LEAD HALIDE PEROVSKITES; PHOTOVOLTAIC PERFORMANCE; PROCESSED PEROVSKITE; HIGHLY EFFICIENT; RECENT PROGRESS; ZINC-OXIDE; TEMPERATURE; CRYSTALLIZATION; ENHANCEMENT; CH3NH3PBI3;
D O I
10.1021/acsaem.9b01160
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The stability of perovskite solar cells (PSCs) is currently a hot topic, but the investigation as well as the understanding of the degradation mechanisms remain incomplete. We present the intrinsic degradation mechanisms of a traditional monocation perovskite in photovoltaic devices performed with various electron transport layers (ETLs). The monocation perovskite material is a Cl-doped CH3NH3PbI3 system, known to provide a favorable morphology leading to improved efficiency. With the long-term view of developing low-temperature processes for PSCs, two emerging ETLs compatible with TiO2 substitution were chosen in order to study both the initial perovskite state and performance, along with their stability after aging. Aluminum-doped zinc oxide (AZO) and tin oxide (SnO2) were thus selected and placed as the ETL in a planar NIP solar cell architecture, leading to different n-type substrates that can imply deviations in the formation and/or degradation of the perovskite layer. As a result, the overall performance and stability for the designed devices were strongly impacted using AZO as compared to SnO2. A detailed investigation using complementary characterization techniques helped in the understanding of the initial compositions and morphologies of the perovskite according to the underlying ETL layer used and their unalike evolution during mild aging conditions (inert atmosphere, dark, 35 degrees C). Infrared spectroscopy, X-ray diffraction, UV-visible absorption, photo- luminescence, scanning electron microscopy, and current-voltage characteristics brought a new understanding of the local degradation mechanisms and their consequences on the macroscopic functional properties of PSC devices. Two different degradation mechanisms specific to the ETL have been distinguished. The ETL nature controls the perovskite microstructure and thereby the performance and stability of the complete device.
引用
收藏
页码:7183 / 7195
页数:25
相关论文
共 50 条
  • [31] Efficient Planar Perovskite Solar Cells with ZnO Electron Transport Layer
    Qiu, Chufeng
    Wu, Yan
    Song, Jiaxing
    Wang, Wentao
    Li, Zaifang
    COATINGS, 2022, 12 (12)
  • [32] Chlorine-modified SnO2 electron transport layer for high-efficiency perovskite solar cells
    Ren, Xiaodong
    Liu, Yucheng
    Lee, Dong Geon
    Kim, Won Bin
    Han, Gill Sang
    Jung, Hyun Suk
    Liu, Shengzhong
    INFOMAT, 2020, 2 (02) : 401 - 408
  • [33] Improvement of planar perovskite solar cells by using solution processed SnO2/CdS as electron transport layer
    Mohamadkhani, Fateme
    Javadpour, Sirus
    Taghavinia, Nima
    SOLAR ENERGY, 2019, 191 : 647 - 653
  • [34] Phosphate-Passivated SnO2 Electron Transport Layer for High-Performance Perovskite Solar Cells
    Jiang, Ershuai
    Ai, Yuclian
    Yan, Jin
    Li, Nan
    Lin, Liujin
    Wang, Zenggui
    Shou, Chunhui
    Yan, Baojie
    Zeng, Yuheng
    Sheng, Jiang
    Ye, Jichun
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (40) : 36727 - 36734
  • [35] Effect of an Al-doped ZnO electron transport layer on the efficiency of inverted bulk heterojunction solar cells
    Park, Sujung
    Kang, Rakwon
    Cho, Shinuk
    CURRENT APPLIED PHYSICS, 2020, 20 (01) : 172 - 177
  • [36] Composites electron transport layer of PVA-regulated SnO2 for high-efficiency stable perovskite solar cells
    Tang, Jianyao
    Chen, Yiming
    Xu, Zhenhua
    Li, Xiaohui
    Liu, Meiyue
    Chen, Zeng
    Zhang, Putao
    Li, Shengjun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1004
  • [37] Origins of Efficient Perovskite Solar Cells with Low-Temperature Processed SnO2 Electron Transport Layer
    Yun, Alan Jiwan
    Kim, Jinhyun
    Hwang, Taehyun
    Park, Byungwoo
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (05) : 3554 - 3560
  • [38] Application of EDTA/SnO2 double-layer composite electron transport layer to perovskite solar cells
    Sun Meng-Jie
    He Zhi-Qun
    Zheng Yi-Fan
    Shao Yu-Chuan
    ACTA PHYSICA SINICA, 2022, 71 (13)
  • [39] Polyelectrolyte-Doped SnO2 as a Tunable Electron Transport Layer for High-Efficiency and Stable Perovskite Solar Cells
    Huang, Xiangping
    Du, Jianhui
    Guo, Xing
    Lin, Zhenhua
    Ma, Jing
    Su, Jie
    Feng, Liping
    Zhang, Chunfu
    Zhang, Jincheng
    Chang, Jingjing
    Hao, Yue
    SOLAR RRL, 2020, 4 (01):
  • [40] Enhanced performance and the related mechanisms of organic solar cells using Li-doped SnO2 as the electron transport layer
    Wang, Yanzhou
    Zhang, Yahui
    Zhang, Li
    Wu, Zonghao
    Su, Qing
    Liu, Qiming
    Fu, Yujun
    Li, Junshuai
    Li, Yali
    He, Deyan
    MATERIALS CHEMISTRY AND PHYSICS, 2020, 254