LOCAL MAXIMIZERS OF ADJOINT FOURIER RESTRICTION ESTIMATES FOR THE CONE, PARABOLOID AND SPHERE

被引:8
作者
Goncalves, Felipe [1 ]
Negro, Giuseppe [2 ]
机构
[1] Univ Bonn, Hausdorff Ctr Math, Bonn, Germany
[2] Inst Super Tecn, Dept Matemat, Lisbon, Portugal
基金
英国工程与自然科学研究理事会;
关键词
Fourier extension; Fourier restriction; Schr?dinger equation; wave equation; Strichartz estimates; sharp inequality; local maximizer; cone; paraboloid; WAVE-EQUATION; INEQUALITY; INTEGRALS;
D O I
10.2140/apde.2022.15.1097
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that, possibly after a compactification of spacetime, constant functions are local maximizers of the Tomas-Stein adjoint Fourier restriction inequality for the cone and paraboloid in every dimension, and for the sphere in dimension up to 60. For the cone and paraboloid we work from the PDE framework, which enables the use of the Penrose and the Lens transformations, which map the conjectured optimal functions into constants.
引用
收藏
页码:1096 / 1130
页数:35
相关论文
共 23 条
[11]   Global maximizers for the sphere adjoint Fourier restriction inequality [J].
Foschi, Damian .
JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 268 (03) :690-702
[12]  
Foschi D, 2007, J EUR MATH SOC, V9, P739
[13]   Orthogonal Polynomials and Sharp Estimates for the Schrodinger Equation [J].
Goncalves, Felipe .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (08) :2356-2383
[14]   PRINCIPAL CURVATURE AND HARMONIC-ANALYSIS [J].
GREENLEAF, A .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (04) :519-537
[15]  
Hormander L., 1997, Lectures on Nonlinear Hyperbolic Equations, Mathematiques & Applications, V26
[16]   Bessel functions: Monotonicity and bounds [J].
Landau, LJ .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 61 :197-215
[17]   Sharp inequalities for functional integrals and traces of conformally invariant operators [J].
Morpurgo, C .
DUKE MATHEMATICAL JOURNAL, 2002, 114 (03) :477-553
[18]  
Negro G, 2022, Arxiv, DOI arXiv:1802.04114
[19]   Estimates for certain integrals of products of six Bessel functions [J].
Oliveira e Silva, Diogo ;
Thiele, Christoph .
REVISTA MATEMATICA IBEROAMERICANA, 2017, 33 (04) :1423-1462
[20]   A refinement of the Strichartz inequality for the wave equation with applications [J].
Ramos, Javier .
ADVANCES IN MATHEMATICS, 2012, 230 (02) :649-698