LOCAL MAXIMIZERS OF ADJOINT FOURIER RESTRICTION ESTIMATES FOR THE CONE, PARABOLOID AND SPHERE

被引:8
作者
Goncalves, Felipe [1 ]
Negro, Giuseppe [2 ]
机构
[1] Univ Bonn, Hausdorff Ctr Math, Bonn, Germany
[2] Inst Super Tecn, Dept Matemat, Lisbon, Portugal
基金
英国工程与自然科学研究理事会;
关键词
Fourier extension; Fourier restriction; Schr?dinger equation; wave equation; Strichartz estimates; sharp inequality; local maximizer; cone; paraboloid; WAVE-EQUATION; INEQUALITY; INTEGRALS;
D O I
10.2140/apde.2022.15.1097
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that, possibly after a compactification of spacetime, constant functions are local maximizers of the Tomas-Stein adjoint Fourier restriction inequality for the cone and paraboloid in every dimension, and for the sphere in dimension up to 60. For the cone and paraboloid we work from the PDE framework, which enables the use of the Penrose and the Lens transformations, which map the conjectured optimal functions into constants.
引用
收藏
页码:1096 / 1130
页数:35
相关论文
共 23 条
[1]  
[Anonymous], 2009, New York J. Math.
[2]  
[Anonymous], 2006, CBMS Regional Series in Mathematics
[3]  
[Anonymous], 2007, Table of Integrals, Series, and Products
[4]   Mass concentration phenomena for the L2-critical nonlinear Schrodinger equation [J].
Begout, Pascal ;
Vargas, Ana .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (11) :5257-5282
[5]   A sharp Strichartz estimate for the wave equation with data in the energy space [J].
Bez, Neal ;
Rogers, Keith M. .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (03) :805-823
[6]   A NOTE ON THE SOBOLEV INEQUALITY [J].
BIANCHI, G ;
EGNELL, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (01) :18-24
[7]   Sharp mixed norm spherical restriction [J].
Carneiro, Emanuel ;
Oliveira e Silva, Diogo ;
Sousa, Mateus .
ADVANCES IN MATHEMATICS, 2019, 341 :583-608
[8]   A sharp trilinear inequality related to Fourier restriction on the circle [J].
Carneiro, Emanuel ;
Foschi, Damiano ;
Oliveira e Silva, Diogo ;
Thiele, Christoph .
REVISTA MATEMATICA IBEROAMERICANA, 2017, 33 (04) :1463-1486
[9]   EXISTENCE OF EXTREMALS FOR A FOURIER RESTRICTION INEQUALITY [J].
Christ, Michael ;
Shao, Shuanglin .
ANALYSIS & PDE, 2012, 5 (02) :261-312
[10]   Some recent progress on sharp Fourier restriction theory [J].
Foschi, D. ;
Oliveira e Silva, D. .
ANALYSIS MATHEMATICA, 2017, 43 (02) :241-265