Peak-Graph-Based Fast Density Peak Clustering for Image Segmentation

被引:28
作者
Guan, Junyi [1 ]
Li, Sheng [1 ]
He, Xiongxiong [1 ]
Chen, Jiajia [1 ]
机构
[1] Zhejiang Univ Technol, Coll Informat Engn, Hangzhou 310023, Peoples R China
基金
美国国家科学基金会;
关键词
image segmentation; density peak clustering; kNN; peak-graph;
D O I
10.1109/LSP.2021.3072794
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Fuzzy c-means (FCM) algorithm as a traditional clustering algorithm for image segmentation cannot effectively preserve local spatial information of pixels, which leads to poor segmentation results with inconsistent regions. For the remedy, superpixel technologies are applied, but spatial information preservation highly relies on the quality of superpixels. Density peak clustering algorithm (DPC) can reconstruct spatial information of arbitrary-shaped clusters, but its high time complexity O(n(2)) and unrobust allocation strategy decrease its applicability for image segmentation. Herein, a fast density peak clustering method (PGDPC) based on the kNN distance matrix of data with time complexity O(nlog(n)) is proposed. By using the peak-graph-based allocation strategy, PGDPC is more robust in the reconstruction of spatial information of various complex-shaped clusters, so it can rapidly and accurately segment images into high-consistent segmentation regions. Experiments on synthetic datasets, real and Wireless Capsule Endoscopy (WCE) images demonstrate that PGDPC as a fast and robust clustering algorithm is applicable to image segmentation.
引用
收藏
页码:897 / 901
页数:5
相关论文
共 44 条
[1]   Superpixels and Polygons using Simple Non-Iterative Clustering [J].
Achanta, Radhakrishna ;
Susstrunk, Sabine .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :4895-4904
[2]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[3]  
Akbari M, 2018, IEEE ENG MED BIO, P69, DOI 10.1109/EMBC.2018.8512197
[4]  
[Anonymous], 2007, ACM Transactions on Knowledge Discovery from Data (TKDD), DOI DOI 10.1145/1297332.1297338
[5]   Contour Detection and Hierarchical Image Segmentation [J].
Arbelaez, Pablo ;
Maire, Michael ;
Fowlkes, Charless ;
Malik, Jitendra .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (05) :898-916
[6]   Fast density clustering strategies based on the k-means algorithm [J].
Bai, Liang ;
Cheng, Xueqi ;
Liang, Jiye ;
Shen, Huawei ;
Guo, Yike .
PATTERN RECOGNITION, 2017, 71 :375-386
[7]   Deep Watershed Transform for Instance Segmentation [J].
Bai, Min ;
Urtasun, Raquel .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2858-2866
[8]  
Beygelzimer A., 2006, ICML
[9]   FCM - THE FUZZY C-MEANS CLUSTERING-ALGORITHM [J].
BEZDEK, JC ;
EHRLICH, R ;
FULL, W .
COMPUTERS & GEOSCIENCES, 1984, 10 (2-3) :191-203
[10]   Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation [J].
Cai, Weiling ;
Chen, Songean ;
Zhang, Daoqiang .
PATTERN RECOGNITION, 2007, 40 (03) :825-838