Burau representation and random walks on string links

被引:14
作者
Lin, XS [1 ]
Tian, F
Wang, ZH
机构
[1] Univ Calif Riverside, Riverside, CA 92521 USA
[2] Univ Calif San Diego, La Jolla, CA 92093 USA
[3] Indiana Univ, Bloomington, IN 47405 USA
关键词
D O I
10.2140/pjm.1998.182.289
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using a probabilistic interpretation of the Burau representation of the braid group offered by Vaughan Jones, we generalize the Burau representation to a representation of the semigroup of string links. This representation is determined by a linear system, and is dominated by finite type string link invariants. For positive string links, the representation matrix can be interpreted as the transition matrix of a Markov process. For positive non-separable links, we show that all states are persistent.
引用
收藏
页码:289 / 302
页数:14
相关论文
共 8 条
[1]  
[Anonymous], GTM
[2]   ON THE VASSILIEV KNOT INVARIANTS [J].
BARNATAN, D .
TOPOLOGY, 1995, 34 (02) :423-472
[3]   VASSILIEV HOMOTOPY STRING LINK INVARIANTS [J].
BARNATAN, D .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 1995, 4 (01) :13-32
[4]  
Billingsley P., 1986, PROBABILITY MEASURE
[5]  
HABEGGER N., 1990, J. Amer. Math. Soc., V3, P389
[6]   HECKE ALGEBRA REPRESENTATIONS OF BRAID-GROUPS AND LINK POLYNOMIALS [J].
JONES, VFR .
ANNALS OF MATHEMATICS, 1987, 126 (02) :335-388
[7]  
LIN XS, 1996, AMS IP STUDIES ADV M, V2