Mechanism of DNA End Sensing and Processing by the Mre11-Rad50 Complex

被引:89
|
作者
Kaeshammer, Lisa [1 ,2 ]
Saathoff, Jan-Hinnerk [1 ,2 ]
Lammens, Katja [1 ,2 ]
Gut, Fabian [1 ,2 ]
Bartho, Joseph [1 ,2 ]
Alt, Aaron [1 ,2 ]
Kessler, Brigitte [1 ,2 ]
Hopfner, Karl-Peter [1 ,2 ,3 ]
机构
[1] Ludwig Maximilians Univ Munchen, Dept Biochem, D-81377 Munich, Germany
[2] Ludwig Maximilians Univ Munchen, Gene Ctr, D-81377 Munich, Germany
[3] Ctr Integrated Prot Sci, D-81377 Munich, Germany
基金
欧洲研究理事会;
关键词
DOUBLE-STRAND-BREAK; CRYO-EM; NUCLEASE COMPLEX; MRE11; NUCLEASE; REPAIR; RESECTION; VISUALIZATION; ENDONUCLEASE; BINDING; SAE2;
D O I
10.1016/j.molcel.2019.07.035
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
DNA double-strand breaks (DSBs) threaten genome stability throughout life and are linked to tumorigenesis in humans. To initiate DSB repair by end joining or homologous recombination, the Mre11-nuclease Rad50-ATPase complex detects and processes diverse and obstructed DNA ends, but a structural mechanism is still lacking. Here we report cryo-EM structures of the E. coli Mre11-Rad50 homolog SbcCD in resting and DNA-bound cutting states. In the resting state, Mre11's nuclease is blocked by ATP-Rad50, and the Rad50 coiled coils appear flexible. Upon DNA binding, the two coiled coils zip up into a rod and, together with the Rad50 nucleotide-binding domains, form a clamp around dsDNA. Mre11 moves to the side of Rad50, binds the DNA end, and assembles a DNA cutting channel for the nuclease reactions. The structures reveal how Mre11-Rad50 can detect and process diverse DNA ends and uncover a clamping and gating function for the coiled coils.
引用
收藏
页码:382 / +
页数:19
相关论文
共 50 条
  • [1] Mre11-Rad50: the DNA end game
    Hopfner, Karl-Peter
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2023, 51 (02) : 527 - 538
  • [2] Structural mechanism of endonucleolytic processing of blocked DNA ends and hairpins by Mre11-Rad50
    Gut, Fabian
    Kaeshammer, Lisa
    Lammens, Katja
    Bartho, Joseph D.
    Boggusch, Anna-Maria
    van de Logt, Erik
    Kessler, Brigitte
    Hopfner, Karl-Peter
    MOLECULAR CELL, 2022, 82 (18) : 3513 - +
  • [3] The dynamic nature of the Mre11-Rad50 DNA break repair complex
    Beikzadeh, Mahtab
    Latham, Michael P.
    PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2021, 163 : 14 - 22
  • [4] Mre11-Rad50 complex crystals suggest molecular calisthenics
    Wyman, Claire
    Lebbink, Joyce
    Kanaar, Roland
    DNA REPAIR, 2011, 10 (10) : 1066 - 1070
  • [5] Tethering on the brink: the evolutionarily conserved Mre11-Rad50 complex
    Connelly, JC
    Leach, DRF
    TRENDS IN BIOCHEMICAL SCIENCES, 2002, 27 (08) : 410 - 418
  • [6] NBS1 promotes the endonuclease activity of the MRE11-RAD50 complex by sensing CtIP phosphorylation
    Anand, Roopesh
    Jasrotia, Arti
    Bundschuh, Diana
    Howard, Sean Michael
    Ranjha, Lepakshi
    Stucki, Manuel
    Cejka, Petr
    EMBO JOURNAL, 2019, 38 (07):
  • [7] Structure of the ATP-free Mre11-Rad50 DNA damage repair complex bound to DNA substrates
    Beikzadeh, Mahtab
    Canny, Marella
    Latham, Michael
    FASEB JOURNAL, 2021, 35
  • [8] Structure of the ATP-Free Mre11-Rad50 DNA Damage Repair Complex Bound to DNA Substrates
    Beikzadeh, Mahtab
    Canny, Marella
    Latham, Michael
    BIOPHYSICAL JOURNAL, 2021, 120 (03) : 18A - 19A
  • [9] Xrs2 Dependent and Independent Functions of the Mre11-Rad50 Complex
    Oh, Julyun
    Al-Zain, Amr
    Cannavo, Elda
    Cejka, Petr
    Symington, Lorraine S.
    MOLECULAR CELL, 2016, 64 (02) : 405 - 415
  • [10] Biochemical Characterization of Bacteriophage T4 Mre11-Rad50 Complex
    Herdendorf, Timothy J.
    Albrecht, Dustin W.
    Benkovic, Stephen J.
    Nelson, Scott W.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2011, 286 (04) : 2382 - 2392