Faradaic and Non-Faradaic Contributions to the Power and Energy Characteristics of Electrolytic Manganese Dioxide for Electrochemical Capacitors

被引:32
|
作者
Dupont, Madeleine F. [1 ]
Donne, Scott W. [1 ]
机构
[1] Univ Newcastle, Discipline Chem, Callaghan, NSW 2308, Australia
关键词
MNO2; STORAGE; SUPERCAPACITORS; SPECTROSCOPY; PERFORMANCE; ELECTRODES; PHASES;
D O I
10.1149/2.0401606jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Step potential electrochemical spectroscopy (SPECS) has been applied to a range of different electrolytic manganese dioxide (EMD) samples to examine the changes in the charge storage mechanism as a function of the scan rate. The SPECS method allowed the charge storage contributions due to double layer and pseudo-capacitance to be decoupled. The charge storage mechanism has been shown to transition from predominantly pseudo-capacitive behavior to predominantly double layer behavior as the scan rate is increased. The relative contributions from each of these processes to the overall specific energy and power of each EMD samples has been analyzed and related to the properties of each material. (C) 2016 The Electrochemical Society.
引用
收藏
页码:A888 / A897
页数:10
相关论文
共 50 条
  • [21] Immunosensing prostate-specific antigen: Faradaic vs non-Faradaic electrochemical impedance spectroscopy analysis on interdigitated microelectrode device
    Ibau, Conlathan
    Arshad, M. K. Md
    Gopinath, Subash C. B.
    Nuzaihan, M. M.
    Fathil, M. F. M.
    Shamsuddin, Shahidah Arina
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2020, 162 : 1924 - 1936
  • [22] Modeling cyclic voltammetry responses of porous electrodes: An approach incorporating faradaic and non-faradaic contributions through porous model and constant phase element
    Kiniman, Vikrom
    Kanokwhale, Chanathip
    Boonto, Phanuphong
    Pholauyphon, Wasinee
    Nantasaksiri, Kotchakarn
    Charoen-amornkitt, Patcharawat
    Suzuki, Takahiro
    Tsushima, Shohji
    JOURNAL OF ENERGY STORAGE, 2024, 83
  • [23] Non-faradaic electrochemical modification of catalytic activity .11. Ethane oxidation on Pt
    Kaloyannis, A
    Vayenas, CG
    JOURNAL OF CATALYSIS, 1997, 171 (01) : 148 - 159
  • [24] NON-FARADAIC ELECTROCHEMICAL MODIFICATION OF CATALYTIC ACTIVITY - SOLID ELECTROLYTES AS ACTIVE CATALYST SUPPORTS
    VAYENAS, CG
    BEBELIS, S
    YENTEKAKIS, IV
    KARAVASILIS, C
    YI, J
    SOLID STATE IONICS, 1994, 72 (pt 2) : 321 - 327
  • [25] A TRANSIENT IMPEDANCE APPROACH TO NON-FARADAIC ELECTROCHEMICAL KINETICS AT LIVING CELL-MEMBRANES
    SCHMUKLER, R
    PILLA, AA
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1982, 129 (03) : 526 - 528
  • [26] Non-Faradaic electrochemical modification of catalytic activity - 12. Propylene oxidation on Pt
    Kaloyannis, A
    Vayenas, CG
    JOURNAL OF CATALYSIS, 1999, 182 (01) : 37 - 47
  • [27] Non-Faradaic Energy Storage by Room Temperature Ionic Liquids in Nanoporous Electrodes
    Vatamanu, Jenel
    Vatamanu, Mihaela
    Bedrov, Dmitry
    ACS NANO, 2015, 9 (06) : 5999 - 6017
  • [28] Non-Faradaic Electrochemical Modification of Catalytic Activity REVERSIBLE PROMOTION OF PLATINUM METALS CATALYSTS
    Vayenas, C. G.
    Bebelis, S.
    Yentekakis, I. V.
    Tsiakaras, P.
    Karasali, H.
    PLATINUM METALS REVIEW, 1990, 34 (03) : 122 - 130
  • [29] In situ controlled promotion of catalyst surfaces: Non-Faradaic electrochemical modification of catalytic activity
    Neophytides, SG
    Bebelis, S
    Yentekakis, IV
    Jiang, Y
    Pliangos, C
    Karavasilis, C
    Ladas, S
    Vayenas, CG
    KINETICS AND CATALYSIS, 1996, 37 (05) : 666 - 675
  • [30] Understanding energy loss in parallelly connected microbial fuel cells: Non-Faradaic current
    An, Junyeong
    Sim, Junyoung
    Feng, Yujie
    Lee, Hyung-Sool
    BIORESOURCE TECHNOLOGY, 2016, 203 : 280 - 286