Hecke operators and Q-groups associated to self-adjoint homogeneous cones

被引:4
作者
Gunnells, PE [1 ]
McConnell, M
机构
[1] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[2] WANDL Inc, Bound Brook, NJ 08805 USA
基金
美国国家科学基金会;
关键词
Hecke operators; self-adjoint homogeneous cones; arithmetic groups; automorphic forms; Jordan algebras; MODULAR SYMBOLS; QUADRATIC FIELDS; COHOMOLOGY; GL(3);
D O I
10.1016/S0022-314X(02)00041-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a reductive algebraic group associated to a self-adjoint homogeneous cone defined over Q, and let Gamma subset of G be an appropriate neat arithmetic subgroup. We present two algorithms to compute the action of the Hecke operators on H-i (Gamma; Z) for all i. This simultaneously generalizes the modular symbol algorithm of Ash-Rudolph (Invent. Math. 55 (1979) 241) to a larger class of groups, and proposes techniques to compute the Hecke-module structure of previously inaccessible cohomology groups. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:46 / 71
页数:26
相关论文
共 26 条