K1 of separative exchange rings and C*-algebras with real rank zero

被引:30
作者
Ara, P [1 ]
Goodearl, KR
O'Meara, KC
Raphael, R
机构
[1] Univ Autonoma Barcelona, Bellaterra 08193, Spain
[2] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA
[3] Univ Canterbury, Christchurch 1, New Zealand
[4] Concordia Univ, Montreal, PQ H4B 1R6, Canada
关键词
D O I
10.2140/pjm.2000.195.261
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any (unital) exchange ring R whose finitely generated projective modules satisfy the separative cancellation property (A + A congruent to A + B congruent to B + B double right arrow A congruent to B), it is shown that all invertible square matrices over R can be diagonalized by elementary row and column operations. Consequently, the natural homomorphism GL(1) (R) --> K-1 (R) is surjective. In combination with a result of Huaxin Lin, it follows that for any separative, unital C*- algebra A with real rank zero, the topological K-1 (A) is naturally isomorphic to the unitary group U(A) modulo the connected component of the identity. This verifies, in the separative case, a conjecture of Shuang Zhang.
引用
收藏
页码:261 / 275
页数:15
相关论文
共 34 条
[1]  
Ara P, 1997, LINEAR ALGEBRA APPL, V265, P147
[2]   Separative cancellation for projective modules over exchange rings [J].
Ara, P ;
Goodearl, KR ;
O'Meara, KC ;
Pardo, E .
ISRAEL JOURNAL OF MATHEMATICS, 1998, 105 (1) :105-137
[3]  
Blackadar B, 1986, MSRI PUBL, V5
[4]  
Brown LG, 1995, ASTERISQUE, P115
[5]  
Brown LG, 1995, J REINE ANGEW MATH, V469, P113
[6]   C-STAR-ALGEBRAS OF REAL RANK ZERO [J].
BROWN, LG ;
PEDERSEN, GK .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 99 (01) :131-149
[7]  
BROWN LG, IN PRESS NONSTABLE K
[8]  
CHEN H, 1998, WHITEHEAD GROUPS EXC
[9]  
Cohn P.M., 1966, Publ. Math., Inst. Hautes Etud. Sci., V30, P365
[10]   REFINEMENTS FOR INFINITE DIRECT DECOMPOSITIONS OF ALGEBRAIC SYSTEMS [J].
CRAWLEY, P ;
JONSSON, B .
PACIFIC JOURNAL OF MATHEMATICS, 1964, 14 (03) :797-&