Local Discontinuous Galerkin Methods with Novel Basis for Fractional Diffusion Equations with Non-smooth Solutions

被引:0
作者
Lyu, Liyao [1 ,2 ]
Chen, Zheng [3 ]
机构
[1] Soochow Univ, Sch Math Sci, Suzhou 215006, Jiangsu, Peoples R China
[2] Michigan State Univ, Dept Computat Math Sci & Engn, E Lansing, MI 48824 USA
[3] Univ Massachusetts, Dept Math, Dartmouth, MA 02747 USA
关键词
Local discontinuous Galerkin methods; Fractional diffusion equations; Non-smooth solutions; Novel basis; Optimal order of accuracy; ELLIPTIC PROBLEMS; APPROXIMATION; SCHEME;
D O I
10.1007/s42967-020-00104-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop novel local discontinuous Galerkin (LDG) methods for fractional diffusion equations with non-smooth solutions. We consider such problems, for which the solutions are not smooth at boundary, and therefore the traditional LDG methods with piecewise polynomial solutions suffer accuracy degeneracy. The novel LDG methods utilize a solution information enriched basis, simulate the problem on a paired special mesh, and achieve optimal order of accuracy. We analyze the L-2 stability and optimal error estimate in L-2-norm. Finally, numerical examples are presented for validating the theoretical conclusions.
引用
收藏
页码:227 / 249
页数:23
相关论文
共 26 条
[1]  
Canuto C., 1988, Spectral Methods: Fundamentals in Single Domains, V1st
[2]   FOURTH ORDER ACCURATE SCHEME FOR THE SPACE FRACTIONAL DIFFUSION EQUATIONS [J].
Chen, Minghua ;
Deng, Weihua .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (03) :1418-1438
[3]   The local discontinuous Galerkin method for time-dependent convection-diffusion systems [J].
Cockburn, B ;
Shu, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) :2440-2463
[4]  
Cockburn B, 2000, Lecture Notes in Computational Science and Engineering
[5]   Numerical solution of the Burgers' equation over geometrically graded mesh [J].
Dag, Idris ;
Sahin, Ali .
KYBERNETES, 2007, 36 (5-6) :721-735
[6]   LOCAL DISCONTINUOUS GALERKIN METHODS FOR FRACTIONAL DIFFUSION EQUATIONS [J].
Deng, W. H. ;
Hesthaven, J. S. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (06) :1845-1864
[7]   Numerical algorithm for the time fractional Fokker-Planck equation [J].
Deng, Weihua .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 227 (02) :1510-1522
[8]   Variational formulation and efficient implementation for solving the tempered fractional problems [J].
Deng, Weihua ;
Zhang, Zhijiang .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (04) :1224-1257
[9]   Discontinuous Galerkin methods with plane waves for time-harmonic problems [J].
Gabard, Gwenael .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 225 (02) :1961-1984
[10]  
Hesthaven JS, 2007, C MO AP C M, P1, DOI 10.2277/0521792118