Fully discrete finite element approximation for a family of degenerate parabolic mixed equations

被引:6
作者
Acevedo, Ramiro [1 ]
Gomez, Christian [1 ]
Lopez-Rodriguez, Bibiana [2 ]
机构
[1] Univ Cauca, Popayan, Colombia
[2] Univ Nacl Sede Medellin, Medellin, Colombia
关键词
Degenerate parabolic equations; Mixed problems; Finite element method; Fully-discrete approximation; Error estimates; Eddy current model; EDDY-CURRENT PROBLEM; ELECTRIC-FIELD; FEM; FORMULATION; MODEL;
D O I
10.1016/j.camwa.2021.05.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this work is to show an abstract framework to analyze the numerical approximation for a family of linear degenerate parabolic mixed equations by using a finite element method in space and a Backward-Euler scheme in time. We consider sufficient conditions to prove that the fully-discrete problem has a unique solution and prove quasi-optimal error estimates for the approximation. Furthermore, we show that mixed finite element formulations arising from dynamics fluids (time-dependent Stokes problem) and from electromagnetic applications (eddy current models), can be analyzed as applications of the developed theory. Finally, we include numerical tests to illustrate the performance of the method and confirm the theoretical results.
引用
收藏
页码:155 / 177
页数:23
相关论文
共 31 条
  • [1] Well-posedness of a family of degenerate parabolic mixed equations
    Acevedo, Ramiro
    Gomez, Christian
    Lopez-Rodriguez, Bibiana
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 498 (01)
  • [2] A BOUNDARY AND FINITE ELEMENT COUPLING FOR A MAGNETICALLY NONLINEAR EDDY CURRENT PROBLEM
    Acevedo, Ramiro
    Alvarez, Edgardo
    Navia, Paulo
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2020, 52 : 230 - 248
  • [3] An E-based mixed FEM and BEM coupling for a time-dependent eddy current problem
    Acevedo, Ramiro
    Meddahi, Salim
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (02) : 667 - 697
  • [4] AN E-BASED MIXED FORMULATION FOR A TIME-DEPENDENT EDDY CURRENT PROBLEM
    Acevedo, Ramiro
    Meddahi, Salim
    Rodriguez, Rodolfo
    [J]. MATHEMATICS OF COMPUTATION, 2009, 78 (268) : 1929 - 1949
  • [5] An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations
    Alonso, A
    Valli, A
    [J]. MATHEMATICS OF COMPUTATION, 1999, 68 (226) : 607 - 631
  • [6] A justification of eddy currents model for the Maxwell equations
    Ammari, H
    Buffa, A
    Nédélec, JC
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 60 (05) : 1805 - 1823
  • [7] Amrouche C, 1998, MATH METHOD APPL SCI, V21, P823, DOI 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO
  • [8] 2-B
  • [9] [Anonymous], 1984, CALCOLO, DOI 10.1007/bf02576171
  • [10] Numerical analysis of electric field formulations of the eddy current model
    Bermúdez, A
    Rodríguez, R
    Salgado, P
    [J]. NUMERISCHE MATHEMATIK, 2005, 102 (02) : 181 - 201