Exoplanet validation with machine learning: 50 new validated Kepler planets

被引:24
作者
Armstrong, David J. [1 ,2 ]
Gamper, Jevgenij [3 ,4 ]
Damoulas, Theodoros [4 ,5 ,6 ]
机构
[1] Univ Warwick, Dept Phys, Gibbet Hill Rd, Coventry CV4 7AL, W Midlands, England
[2] Univ Warwick, Ctr Exoplanets & Habitabil, Gibbet Hill Rd, Coventry CV4 7AL, W Midlands, England
[3] Univ Warwick, Math Syst CDT, Gibbet Hill Rd, Coventry CV4 7AL, W Midlands, England
[4] Univ Warwick, Dept Comp Sci, Gibbet Hill Rd, Coventry CV4 7AL, W Midlands, England
[5] Univ Warwick, Dept Stat, Gibbet Hill Rd, Coventry CV4 7AL, W Midlands, England
[6] Alan Turing Inst, London NW1 2DB, England
基金
英国工程与自然科学研究理事会; 英国科学技术设施理事会;
关键词
methods: data analysis; methods: statistical; planets and satellites: detection; planets and satellites: general; POTENTIAL TRANSIT SIGNALS; FALSE-POSITIVE PROBABILITIES; IDENTIFYING EXOPLANETS; SUPER-EARTHS; OCCURRENCE RATES; 17; QUARTERS; CANDIDATES; SYSTEM; CLASSIFICATION; FRAMEWORK;
D O I
10.1093/mnras/staa2498
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Over 30 per cent of the similar to 4000 known exoplanets to date have been discovered using 'validation', where the statistical likelihood of a transit arising from a false positive (FP), non-planetary scenario is calculated. For the large majority of these validated planets calculations were performed using the VESPA algorithm. Regardless of the strengths and weaknesses of VESPA, it is highly desirable for the catalogue of known planets not to be dependent on a single method. We demonstrate the use of machine learning algorithms, specifically a Gaussian process classifier (GPC) reinforced by other models, to perform probabilistic planet validation incorporating prior probabilities for possible FP scenarios. The GPC can attain a mean log-loss per sample of 0.54 when separating confirmed planets from FPs in the Kepler Threshold-Crossing Event (TCE) catalogue. Our models can validate thousands of unseen candidates in seconds once applicable vetting metrics are calculated, and can be adapted to work with the active Transiting Exoplanet Survey Satellite (TESS) mission, where the large number of observed targets necessitate the use of automated algorithms. We discuss the limitations and caveats of this methodology, and after accounting for possible failure modes newly validate 50 Kepler candidates as planets, sanity checking the validations by confirming them with VESPA using up to date stellar information. Concerning discrepancies with VESPA arise for many other candidates, which typically resolve in favour of our models. Given such issues, we caution against using single-method planet validation with either method until the discrepancies are fully understood.
引用
收藏
页码:5327 / 5344
页数:18
相关论文
共 74 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   The NASA Exoplanet Archive: Data and Tools for Exoplanet Research [J].
Akeson, R. L. ;
Chen, X. ;
Ciardi, D. ;
Crane, M. ;
Good, J. ;
Harbut, M. ;
Jackson, E. ;
Kane, S. R. ;
Laity, A. C. ;
Leifer, S. ;
Lynn, M. ;
McElroy, D. L. ;
Papin, M. ;
Plavchan, P. ;
Ramirez, S. V. ;
Rey, R. ;
von Braun, K. ;
Wittman, M. ;
Abajian, M. ;
Ali, B. ;
Beichman, C. ;
Beekley, A. ;
Berriman, G. B. ;
Berukoff, S. ;
Bryden, G. ;
Chan, B. ;
Groom, S. ;
Lau, C. ;
Payne, A. N. ;
Regelson, M. ;
Saucedo, M. ;
Schmitz, M. ;
Stauffer, J. ;
Wyatt, P. ;
Zhang, A. .
PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2013, 125 (930) :989-999
[3]  
[Anonymous], 2017, J MACH LEARN RES
[4]   Scientific Domain Knowledge Improves Exoplanet Transit Classification with Deep Learning [J].
Ansdell, Megan ;
Ioannou, Yani ;
Osborn, Hugh P. ;
Sasdelli, Michele ;
Smith, Jeffrey C. ;
Caldwell, Douglas ;
Jenkins, Jon M. ;
Raissi, Chedy ;
Angerhausen, Daniel .
ASTROPHYSICAL JOURNAL LETTERS, 2018, 869 (01)
[5]   Transit shapes and self-organizing maps as a tool for ranking planetary candidates: application to Kepler and K2 [J].
Armstrong, D. J. ;
Pollacco, D. ;
Santerne, A. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 465 (03) :2634-2642
[6]   Automatic vetting of planet candidates from ground-based surveys: machine learning with NGTS [J].
Armstrong, David J. ;
Gunther, Maximilian N. ;
McCormac, James ;
Smith, Alexis M. S. ;
Bayliss, Daniel ;
Bouchy, Francois ;
Burleigh, Matthew R. ;
Casewell, Sarah ;
Eigmueller, Philipp ;
Gillen, Edward ;
Goad, Michael R. ;
Hodgkin, Simon T. ;
Jenkins, James S. ;
Louden, Tom ;
Metrailler, Lionel ;
Pollacco, Don ;
Poppenhaeger, Katja ;
Queloz, Didier ;
Raynard, Liam ;
Rauer, Heike ;
Udry, Stephane ;
Walker, Simon. R. ;
Watson, Christopher A. ;
West, Richard G. ;
Wheatley, Peter J. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 478 (03) :4225-4237
[7]   System description and first light curves of the Hungarian Automated Telescope, an autonomous observatory for variability search [J].
Bakos, GA ;
Lázár, J ;
Papp, I ;
Sári, P ;
Green, EM .
PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2002, 114 (799) :974-987
[8]   Revised Radii of Kepler Stars and Planets Using Gaia Data Release 2 [J].
Berger, Travis A. ;
Huber, Daniel ;
Gaidos, Eric ;
van Saders, Jennifer L. .
ASTROPHYSICAL JOURNAL, 2018, 866 (02)
[9]  
Bishop C. M., 2006, PATTERN RECOGN
[10]   Variational Inference: A Review for Statisticians [J].
Blei, David M. ;
Kucukelbir, Alp ;
McAuliffe, Jon D. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (518) :859-877