Translating complexity and heterogeneity of pancreatic tumor: 3D in vitro to in vivo models

被引:70
作者
Heinrich, Marcel A. [1 ]
Mostafa, Ahmed M. R. H. [1 ]
Morton, Jennifer P. [2 ,3 ]
Hawinkels, Lukas J. A. C. [4 ]
Prakash, Jai [1 ]
机构
[1] Univ Twente, Tech Med Ctr, Dept Biomat Sci & Technol, Sect Targeted Therapeut, NL-7500 AE Enschede, Netherlands
[2] Beatson Inst, Canc Res UK, Garscube Estate,Switchback Rd, Glasgow G61 1BD, Lanark, Scotland
[3] Univ Glasgow, Inst Canc Sci, Garscube Estate,Switchback Rd, Glasgow G61 1QH, Lanark, Scotland
[4] Leiden Univ, Dept Gastroenterol Hepatol, Med Ctr, POB 9600, NL-2300 RC Leiden, Netherlands
关键词
Pancreatic ductal adenocarcinoma; Bioprinting; Tumor-on-chip; Genetically engineered mouse models; Tumor microenvironment; C-KI-RAS; ORTHOTOPIC MURINE MODELS; ENGINEERED MOUSE MODELS; PRECISION-CUT SLICES; CARCINOMA-CELL LINES; DUCTAL ADENOCARCINOMA; ANIMAL-MODELS; XENOGRAFT MODELS; STELLATE CELLS; PROTEIN CORONA;
D O I
10.1016/j.addr.2021.04.018
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive type of cancer with an overall survival rate of less than 7-8%, emphasizing the need for novel effective therapeutics against PDAC. However only a fraction of therapeutics which seemed promising in the laboratory environment will eventually reach the clinic. One of the main reasons behind this low success rate is the complex tumor microenvironment (TME) of PDAC, a highly fibrotic and dense stroma surrounding tumor cells, which supports tumor progression as well as increases the resistance against the treatment. In particular, the growing understanding of the PDAC TME points out a different challenge in the development of efficient therapeutics-a lack of biologically relevant in vitro and in vivo models that resemble the complexity and heterogeneity of PDAC observed in patients. The purpose and scope of this review is to provide an overview of the recent developments in different in vitro and in vivo models, which aim to recapitulate the complexity of PDAC in a laboratory environment, as well to describe how 3D in vitro models can be integrated into drug development pipelines that are already including sophisticated in vivo models. Hereby a special focus will be given on the complexity of in vivo models and the challenges in vitro models face to reach the same levels of complexity in a controllable manner. First, a brief introduction of novel developments in two dimensional (2D) models and ex vivo models is provided. Next, recent developments in three dimensional (3D) in vitro models are described ranging from spheroids, organoids, scaffold models, bioprinted models to organ-on-chip models including a discussion on advantages and limitations for each model. Furthermore, we will provide a detailed overview on the current PDAC in vivo models including chemically-induced models, syngeneic and xenogeneic models, highlighting heteroand orthotopic, patient-derived tissues (PDX) models, and genetically engineered mouse models. Finally, we will provide a discussion on overall limitations of both, in vitro and in vivo models, and discuss necessary steps to overcome these limitations to reach an efficient drug development pipeline, as well as discuss possibilities to include novel in silico models in the process. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:265 / 293
页数:29
相关论文
共 376 条
  • [11] Epithelial to Mesenchymal Transition Contributes to Drug Resistance in Pancreatic Cancer
    Arumugam, Thiruvengadam
    Ramachandran, Vijaya
    Fournier, Keith F.
    Wang, Huamin
    Marquis, Lauren
    Abbruzzese, James L.
    Gallick, Gary E.
    Logsdon, Craig D.
    McConkey, David J.
    Choi, Woonyoung
    [J]. CANCER RESEARCH, 2009, 69 (14) : 5820 - 5828
  • [12] Auras R. A., 2011, Poly (lactic acid): synthesis, structures, properties, processing, and applications, DOI DOI 10.1002/9780470649848
  • [13] Antitumour activity of sunitinib in combination with gemcitabine in experimental pancreatic cancer
    Awasthi, Niranjan
    Schwarz, Margaret A.
    Schwarz, Roderich E.
    [J]. HPB, 2011, 13 (09) : 597 - 604
  • [14] Metastasis in Pancreatic Ductal Adenocarcinoma: Current Standing and Methodologies
    Ayres Pereira, Marina
    Chio, Iok In Christine
    [J]. GENES, 2020, 11 (01)
  • [15] Sonic Hedgehog Promotes Desmoplasia in Pancreatic Cancer
    Bailey, Jennifer M.
    Swanson, Benjamin J.
    Hamada, Tomofumi
    Eggers, John P.
    Singh, Pankaj K.
    Caffery, Thomas
    Ouellette, Michel M.
    Hollingsworth, Michael A.
    [J]. CLINICAL CANCER RESEARCH, 2008, 14 (19) : 5995 - 6004
  • [16] Genomic analyses identify molecular subtypes of pancreatic cancer
    Bailey, Peter
    Chang, David K.
    Nones, Katia
    Johns, Amber L.
    Patch, Ann-Marie
    Gingras, Marie-Claude
    Miller, David K.
    Christ, Angelika N.
    Bruxner, Tim J. C.
    Quinn, Michael C.
    Nourse, Craig
    Murtaugh, L. Charles
    Harliwong, Ivon
    Idrisoglu, Senel
    Manning, Suzanne
    Nourbakhsh, Ehsan
    Wani, Shivangi
    Fink, Lynn
    Holmes, Oliver
    Chin, Vencssa
    Anderson, Matthew J.
    Kazakoff, Stephen
    Leonard, Conrad
    Newell, Felicity
    Waddell, Nick
    Wood, Scott
    Xu, Qinying
    Wilson, Peter J.
    Cloonan, Nicole
    Kassahn, Karin S.
    Taylor, Darrin
    Quek, Kelly
    Robertson, Alan
    Pantano, Lorena
    Mincarelli, Laura
    Sanchez, Luis N.
    Evers, Lisa
    Wu, Jianmin
    Pinese, Mark
    Cowley, Mark J.
    Jones, Marc D.
    Colvin, Emily K.
    Nagrial, Adnan M.
    Humphrey, Emily S.
    Chantrill, Lorraine A.
    Mawson, Amanda
    Humphris, Jeremy
    Chou, Angela
    Pajic, Marina
    Scarlett, Christopher J.
    [J]. NATURE, 2016, 531 (7592) : 47 - +
  • [17] Modeling Pancreatic Cancer with Organoids
    Baker, Lindsey A.
    Tiriac, Herve
    Clevers, Hans
    Tuveson, David A.
    [J]. TRENDS IN CANCER, 2016, 2 (04): : 176 - 190
  • [18] Formation of the Protein Corona: The Interface between Nanoparticles and the Immune System
    Barbero, Francesco
    Russo, Lorenzo
    Vitali, Michele
    Piella, Jordi
    Salvo, Ignacio
    Borrajo, Mireya L.
    Busquets-Fite, Marti
    Grandori, Rita
    Bastus, Neus G.
    Casals, Eudald
    Puntes, Victor
    [J]. SEMINARS IN IMMUNOLOGY, 2017, 34 (0C) : 52 - 60
  • [19] Both p16Ink4a and the p19Arf-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse
    Bardeesy, N
    Aguirre, AJ
    Chu, GC
    Cheng, KH
    Lopez, LV
    Hezel, AF
    Feng, B
    Brennan, C
    Weissleder, R
    Mahmood, U
    Hanahan, D
    Redston, MS
    Chin, L
    DePinho, RA
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (15) : 5947 - 5952
  • [20] The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity
    Barretina, Jordi
    Caponigro, Giordano
    Stransky, Nicolas
    Venkatesan, Kavitha
    Margolin, Adam A.
    Kim, Sungjoon
    Wilson, Christopher J.
    Lehar, Joseph
    Kryukov, Gregory V.
    Sonkin, Dmitriy
    Reddy, Anupama
    Liu, Manway
    Murray, Lauren
    Berger, Michael F.
    Monahan, John E.
    Morais, Paula
    Meltzer, Jodi
    Korejwa, Adam
    Jane-Valbuena, Judit
    Mapa, Felipa A.
    Thibault, Joseph
    Bric-Furlong, Eva
    Raman, Pichai
    Shipway, Aaron
    Engels, Ingo H.
    Cheng, Jill
    Yu, Guoying K.
    Yu, Jianjun
    Aspesi, Peter, Jr.
    de Silva, Melanie
    Jagtap, Kalpana
    Jones, Michael D.
    Wang, Li
    Hatton, Charles
    Palescandolo, Emanuele
    Gupta, Supriya
    Mahan, Scott
    Sougnez, Carrie
    Onofrio, Robert C.
    Liefeld, Ted
    MacConaill, Laura
    Winckler, Wendy
    Reich, Michael
    Li, Nanxin
    Mesirov, Jill P.
    Gabriel, Stacey B.
    Getz, Gad
    Ardlie, Kristin
    Chan, Vivien
    Myer, Vic E.
    [J]. NATURE, 2012, 483 (7391) : 603 - 607