A new self-adaptive algorithm for solving the split common fixed point problem with multiple output sets in Hilbert spaces

被引:29
作者
Reich, Simeon [1 ]
Truong Minh Tuyen [2 ]
Nguyen Thi Thu Thuy [3 ]
Mai Thi Ngoc Ha [4 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[2] Thai Nguyen Univ Sci, Dept Math & Informat, Thai Nguyen, Vietnam
[3] Hanoi Univ Sci & Technol, Sch Appl Math & Informat, Hanoi, Vietnam
[4] Thai Nguyen Univ Agr & Forestry, Thai Nguyen, Vietnam
基金
以色列科学基金会;
关键词
Hilbert space; Metric projection; Nonexpansive mapping; Fixed point; SHRINKING PROJECTION METHOD; STRONG-CONVERGENCE THEOREM; FEASIBILITY PROBLEM;
D O I
10.1007/s11075-021-01144-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the split common fixed point problem with multiple output sets in Hilbert spaces. In order to solve this problem, we propose a new algorithm and establish a strong convergence theorem for it. Moreover, using our method, we also remove the assumptions imposed on the norms of the transfer operators.
引用
收藏
页码:1031 / 1047
页数:17
相关论文
共 33 条
[31]   A variable Krasnosel'skii-Mann algorithm and the multiple-set split feasibility problem [J].
Xu, Hong-Kun .
INVERSE PROBLEMS, 2006, 22 (06) :2021-2034
[32]   Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces [J].
Xu, Hong-Kun .
INVERSE PROBLEMS, 2010, 26 (10)
[33]   The relaxed CQ algorithm solving the split feasibility problem [J].
Yang, QZ .
INVERSE PROBLEMS, 2004, 20 (04) :1261-1266