A new self-adaptive algorithm for solving the split common fixed point problem with multiple output sets in Hilbert spaces

被引:29
作者
Reich, Simeon [1 ]
Truong Minh Tuyen [2 ]
Nguyen Thi Thu Thuy [3 ]
Mai Thi Ngoc Ha [4 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[2] Thai Nguyen Univ Sci, Dept Math & Informat, Thai Nguyen, Vietnam
[3] Hanoi Univ Sci & Technol, Sch Appl Math & Informat, Hanoi, Vietnam
[4] Thai Nguyen Univ Agr & Forestry, Thai Nguyen, Vietnam
基金
以色列科学基金会;
关键词
Hilbert space; Metric projection; Nonexpansive mapping; Fixed point; SHRINKING PROJECTION METHOD; STRONG-CONVERGENCE THEOREM; FEASIBILITY PROBLEM;
D O I
10.1007/s11075-021-01144-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the split common fixed point problem with multiple output sets in Hilbert spaces. In order to solve this problem, we propose a new algorithm and establish a strong convergence theorem for it. Moreover, using our method, we also remove the assumptions imposed on the norms of the transfer operators.
引用
收藏
页码:1031 / 1047
页数:17
相关论文
共 33 条
[1]  
Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
[2]   Bregman distances, totally convex functions, and a method for solving operator equations in banach spaces [J].
Butnariu, Dan ;
Resmerita, Elena .
ABSTRACT AND APPLIED ANALYSIS, 2006,
[4]   A unified treatment of some iterative algorithms in signal processing and image reconstruction [J].
Byrne, C .
INVERSE PROBLEMS, 2004, 20 (01) :103-120
[5]  
Byrne C, 2012, J NONLINEAR CONVEX A, V13, P759
[6]   The multiple-sets split feasibility problem and its applications for inverse problems [J].
Censor, Y ;
Elfving, T ;
Kopf, N ;
Bortfeld, T .
INVERSE PROBLEMS, 2005, 21 (06) :2071-2084
[7]  
Censor Y, 1994, Numerical Algorithms, V8, P221, DOI [DOI 10.1007/BF02142692, 10.1007/BF02142692]
[8]   Algorithms for the Split Variational Inequality Problem [J].
Censor, Yair ;
Gibali, Aviv ;
Reich, Simeon .
NUMERICAL ALGORITHMS, 2012, 59 (02) :301-323
[9]  
Censor Y, 2009, J CONVEX ANAL, V16, P587
[10]   SHRINKING PROJECTION ALGORITHMS FOR THE SPLIT COMMON NULL POINT PROBLEM [J].
Dadashi, Vahid .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 96 (02) :299-306