Switched-Beam Graphene Plasmonic Nanoantenna in the Terahertz Wave Region

被引:17
作者
Dash, Sasmita [1 ]
Soni, Goutam [2 ]
Patnaik, Amalendu [3 ]
Liaskos, Christos [4 ]
Pitsillides, Andreas [5 ]
Akyildiz, Ian F. [6 ]
机构
[1] Univ Cyprus, Dept Elect & Comp Engn, Nicosia, Cyprus
[2] Qualcomm, Bangalore, Karnataka, India
[3] IIT, Dept Elect & Commun Engn, Roorkee, Uttar Pradesh, India
[4] Fdn Res & Technol, Hellas, Iraklion, Greece
[5] Univ Cyprus, Dept Comp Sci, Nicosia, Cyprus
[6] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
基金
欧盟地平线“2020”;
关键词
Terahertz; Graphene; Plasmonics; Yagi-Uda antenna; Switched-beam antenna; Frequency reconfiguration;
D O I
10.1007/s11468-021-01449-y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Large-distance communications beyond a few meters is challenging for Terahertz (THz) signals because of high spreading loss and absorption in the media. The smart antenna concept used for RF antennas to improve the signal-to-interference/noise level can be extended to these THz antennas. Out of the two types of implementations of this concept, viz. (i) adaptive array and (ii) switched-beam antenna, this paper presents the switched-beam nanoantenna for the THz wave region. Based on the Yagi-Uda antenna concept, switched-beam graphene nanoantennas over silicon dioxide (SiO2) substrate is proposed in this paper. In one case (Antenna-I), the antenna is able to switch the beam in +/- 90 degrees directions, whereas in the other case (Antenna-II), the switching directions are 0 degrees, +/- 90 degrees, 180 degrees. This pattern reconfigurability can also be observed over a frequency range leading to simultaneous pattern and frequency reconfigurable nature of the nanoantenna. The reconfigurability is obtained by changing the graphene conductivity through its chemical potential. Due to plasmonic wave propagation in graphene at THz, the proposed graphene nanoantenna resonates at a sub-wavelength scale. Design aspects and the working principle of switched-beam graphene plasmonic nanoantennas in the THz region are discussed in this paper.
引用
收藏
页码:1855 / 1864
页数:10
相关论文
共 39 条
  • [1] Afsheen S, 2021, APPL NANOSCI
  • [2] 5G roadmap: 10 key enabling technologies
    Akyildiz, Ian F.
    Nie, Shuai
    Lin, Shih-Chun
    Chandrasekaran, Manoj
    [J]. COMPUTER NETWORKS, 2016, 106 : 17 - 48
  • [3] Terahertz band: Next frontier for wireless communications
    Akyildiz, Ian F.
    Jornet, Josep Miquel
    Han, Chong
    [J]. PHYSICAL COMMUNICATION, 2014, 12 : 16 - 32
  • [4] Edholm's law of bandwidth
    不详
    [J]. IEEE SPECTRUM, 2004, 41 (07) : 58 - +
  • [5] Superior thermal conductivity of single-layer graphene
    Balandin, Alexander A.
    Ghosh, Suchismita
    Bao, Wenzhong
    Calizo, Irene
    Teweldebrhan, Desalegne
    Miao, Feng
    Lau, Chun Ning
    [J]. NANO LETTERS, 2008, 8 (03) : 902 - 907
  • [6] Ultrahigh electron mobility in suspended graphene
    Bolotin, K. I.
    Sikes, K. J.
    Jiang, Z.
    Klima, M.
    Fudenberg, G.
    Hone, J.
    Kim, P.
    Stormer, H. L.
    [J]. SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) : 351 - 355
  • [7] High Sensing Properties of Magnetic Plasmon Resonance by Strong Coupling in Three-Dimensional Metamaterials
    Chen, Jing
    Yang, Chun
    Gu, Ping
    Kuang, Yihan
    Tang, Chaojun
    Chen, Siyu
    Liu, Zhengqi
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2021, 39 (02) : 562 - 565
  • [8] Electrically modulating and switching infrared absorption of monolayer graphene in metamaterials
    Chen, Jing
    Chen, Siyu
    Gu, Ping
    Yan, Zhendong
    Tang, Chaojun
    Xu, Zhijun
    Liu, Bo
    Liu, Zhengqi
    [J]. CARBON, 2020, 162 : 187 - 194
  • [9] Highly sensitive refractive-index sensor based on strong magnetic resonance in metamaterials
    Chen, Jing
    Nie, Hai
    Tang, Chaojun
    Cui, Yinhang
    Yan, Bo
    Zhang, Zhiyuan
    Kong, Yurong
    Xu, Zhijun
    Cai, Pinggen
    [J]. APPLIED PHYSICS EXPRESS, 2019, 12 (05)
  • [10] Photonic Microcavity-Enhanced Magnetic Plasmon Resonance of Metamaterials for Sensing Applications
    Chen, Jing
    Peng, Cheng
    Qi, Shibin
    Zhang, Qian
    Tang, Chaojun
    Shen, Xueyang
    Da, Haixia
    Wang, Lianhui
    Park, Gun-Sik
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2019, 31 (02) : 113 - 116