Modelling of exchange-spring permanent magnets

被引:90
作者
Schrefl, T [1 ]
Fidler, J [1 ]
机构
[1] Vienna Univ Technol, Inst Appl & Tech Phys, A-1040 Vienna, Austria
关键词
micromagnetic calculation; nanocrystalline materials; rare earth permanent magnets; exchange interactions; remanence; coercivity;
D O I
10.1016/S0304-8853(97)00653-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Micromagnetic modelling using the finite-element method reveals the correlation between the local arrangement of the magnetic moments on a length scale of several nanometers and the magnetic properties of nanocomposite permanent magnets. Theoretical limits for remanence and coercivity are derived for Nd2Fe14B/Fe3B/alpha-Fe nanocrystalline permanent magnets. The coercive field shows a maximum at an average grain size of D = 20 nm. Intergrain exchange interactions override the magneto-crystalline anisotropy of the Nd2Fe14B grains for smaller grains, whereas exchange hardening of the soft phases becomes less effective for larger grains. The calculations show a linear trade off of remanence and coercivity as a function of the alpha-Fe to Fe3B ratio. The coercive field H-c and the remanence J(r) cover the range (H-c, J(r)) = (340 kA/m, 1.4 T) to (610 kA/m, 1.1 T) for a composite magnet containing 40% Nd2Fe14B, (60 - x)% Fe3B, and x% alpha-Fe. The numerical integration of the Gilbert equation yields the transient magnetic states during irreversible switching and thus reveal how reversed domains nucleate and expand. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:970 / 975
页数:6
相关论文
共 50 条
[41]   Perspective and Prospects for Rare Earth Permanent Magnets [J].
Coey, J. M. D. .
ENGINEERING, 2020, 6 (02) :119-131
[42]   Effects of Zr substitution in NdFeB permanent magnets [J].
Shaaban, A. .
Solid State Science and Technology, 2007, 909 :63-67
[43]   Additive Manufacturing of Textured FePrCuB Permanent Magnets [J].
Goll, Dagmar ;
Trauter, Felix ;
Loeffler, Ralf ;
Gross, Thomas ;
Schneider, Gerhard .
MICROMACHINES, 2021, 12 (09)
[44]   A combined-pole permanent magnet synchronous motor incorporating nanocomposite magnets [J].
Xu, Wei ;
Xu, Jing ;
Zhang, Wenhai ;
Wang, Jiyao .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2023, 577
[45]   Novel powder processing technologies for production of rare-earth permanent magnets [J].
Takagi, Kenta ;
Hirayama, Yusuke ;
Okada, Shusuke ;
Yamaguchi, Wataru ;
Ozaki, Kimihiro .
SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2021, 22 (01) :150-159
[46]   Novel Powder Processing Technologies for Production of Rare-earth Permanent Magnets [J].
Takagi K. ;
Hirayama Y. ;
Okada S. ;
Yamaguchi W. ;
Ozaki K. .
Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2022, 69 :S30-S37
[47]   Magnetic properties of bulk nanocomposite permanent magnets based on NdDyFeB alloys with additions [J].
Marinescu, M ;
Chiriac, H ;
Grigoras, M .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2005, 290 :1267-1269
[48]   Coherent radiation by magnets with exchange interactions [J].
Yukalov, V. I. ;
Yukalova, E. P. .
LASER PHYSICS, 2015, 25 (08)
[49]   Computer simulation of the effect of an ultra soft phase on the magnetic properties of nanocrystalline permanent magnets [J].
Griffiths, MK ;
Bishop, JEL ;
Tucker, JW ;
Davies, HA .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2001, 234 (02) :331-352
[50]   ThMn12-Type Alloys for Permanent Magnets [J].
Hadjipanayis, G. C. ;
Gabay, A. M. ;
Schonhobel, A. M. ;
Martin-Cid, A. ;
Barandiaran, J. M. ;
Niarchos, D. .
ENGINEERING, 2020, 6 (02) :141-147