Periodic cyclic homology as sheaf cohomology

被引:2
|
作者
Cortiñas, G [1 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1053 Buenos Aires, DF, Argentina
来源
K-THEORY | 2000年 / 20卷 / 02期
关键词
Grothendieck topology; Cuntz-Quillen theory; Jones-Goodwillie character;
D O I
10.1023/A:1007867728238
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a noncommutative version of the infinitesimal site of Grothendieck. A theorem of Grothendieck establishes that the cohomology of the structure sheaf on the infinitesimal topology of a scheme of characteristic zero is de Rham cohomology. We prove that, for the noncommutative infinitesimal topology of an associative algebra over a field of characteristic zero, the cohomology of the structure sheaf modulo commutators is periodic cyclic cohomology. We also compute the noncommutative infinitesimal cohomology of other sheaves. For example, we show that infinitesimal hypercohomology with coefficients in K-theory gives the fiber of the Jones-Goodwillie character which goes from K-theory to negative cyclic homology.
引用
收藏
页码:175 / 200
页数:26
相关论文
共 50 条