A cm scale electret-based electrostatic wind turbine for low-speed energy harvesting applications

被引:107
作者
Perez, M. [1 ,2 ,3 ]
Boisseau, S. [1 ,2 ]
Gasnier, P. [1 ,2 ]
Willemin, J. [1 ,2 ]
Geisler, M. [1 ,2 ]
Reboud, J. L. [1 ,3 ]
机构
[1] Univ Grenoble Alpes, F-38000 Grenoble, France
[2] CEA Grenoble, Leti, Minatec Campus,17 Rue Martyrs, F-38054 Grenoble 9, France
[3] Univ Grenoble Alpes, G2Elab, F-38000 Grenoble, France
关键词
energy harvesting; airflows; windmill; electrostatic converter; electret; wireless sensor network; GENERATOR;
D O I
10.1088/0964-1726/25/4/045015
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
This paper presents a small-scale airflow energy harvester built on an axial turbine architecture and exploiting an electret-based electrostatic converter. When the airflow velocity is high enough, the windmill starts rotating and creates a periodic relative motion between a stator and a rotor which induces variations of capacitance. These ones are directly converted into electricity thanks to the use of Teflon electrets charged at -1400 V which polarize the variable capacitors. We focus our study on a 4-blade axial turbine with a diameter of D = 40 mm, a depth of W = 10 mm, for a total volume of 12.6 cm(3). This windmill has been tested with various blade angles and different types of electrostatic converters and output powers up to 90 mu W at 1.5 m s(-1) (7.5 mu W cm(-3)) and 1.8 mW at 10 m s(-1) (111 mu W cm(-3)) have been obtained so far. The coefficient of power reaches C-p = 5.8% and among the small-scale airflow energy harvesters previously reported, this one has the lowest cut-in speed (1.5 m s(-1)).
引用
收藏
页数:10
相关论文
共 33 条
  • [1] Design improvements for an electret-based MEMS vibrational electrostatic energy harvester
    Altena, G.
    Renaud, M.
    Elfrink, R.
    Goedbloed, M. H.
    de Nooijer, C.
    van Schaijk, R.
    [J]. 13TH INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS (POWERMEMS 2013), 2013, 476
  • [2] [Anonymous], 1999, ELECTRETS, DOI DOI 10.1007/3-540-17335-8
  • [3] Bansal A, 2009, TRANSDUCERS, P529
  • [4] Bendahmane A., 2012, INT C COMPLEX SYSTEM, P1, DOI [10.1109/ICOCS.2012.6458583, DOI 10.1109/ICOCS.2012.6458583]
  • [5] Boisseau S, 2012, SMALL-SCALE ENERGY HARVESTING, P91, DOI 10.5772/51360
  • [6] Cantilever-based electret energy harvesters
    Boisseau, S.
    Despesse, G.
    Ricart, T.
    Defay, E.
    Sylvestre, A.
    [J]. SMART MATERIALS AND STRUCTURES, 2011, 20 (10)
  • [7] Boland J, 2003, PROC IEEE MICR ELECT, P538
  • [8] Carli D., 2010, 2010 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM 2010), P778, DOI 10.1109/SPEEDAM.2010.5542121
  • [9] Suspended electrodes for reducing parasitic capacitance in electret energy harvesters
    Chen, Rui
    Suzuki, Yuji
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2013, 23 (12)
  • [10] STABILITY OF LIQUID CHARGED ELECTRETS
    CHUDLEIGH, PW
    COLLINS, RE
    HANCOCK, GD
    [J]. APPLIED PHYSICS LETTERS, 1973, 23 (05) : 211 - 212