Hopf maps as static solutions of the complex eikonal equation

被引:14
作者
Adam, C [1 ]
机构
[1] Univ Santiago, Dept Fis Particulas, Fac Fis, E-15706 Santiago De Compostela, Spain
关键词
D O I
10.1063/1.1792931
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate that a class of torus-shaped Hopf maps with arbitrary linking number obeys the static complex eikonal equation. Further, we explore the geometric structure behind these solutions, explaining thereby the reason for their existence. As this equation shows up as an integrability condition in certain nonlinear field theories, the existence of such solutions is of some interest. (C) 2004 American Institute of Physics.
引用
收藏
页码:4017 / 4024
页数:8
相关论文
共 18 条
[1]   Degeneracy of zero modes of the Dirac operator in three dimensions [J].
Adam, C ;
Muratori, B ;
Nash, C .
PHYSICS LETTERS B, 2000, 485 (1-3) :314-318
[2]   Ring-shaped exact Hopf solitons [J].
Adam, C ;
Sánchez-Guillén, J .
JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (11) :5243-5249
[3]   Multiple zero modes of the Dirac operator in three dimensions [J].
Adam, C ;
Muratori, B ;
Nash, C .
PHYSICAL REVIEW D, 2000, 62 (08) :1-9
[4]  
ADAM C, HEPTH0001164
[5]  
ADAM C, HEPTH0302189
[6]   A new approach to integrable theories in any dimension [J].
Alvarez, O ;
Ferreira, LA ;
Guillen, JS .
NUCLEAR PHYSICS B, 1998, 529 (03) :689-736
[7]  
ALVAREZ O, HEPTH9710147
[8]   Exact static soliton solutions of (3+1)-dimensional integrable theory with nonzero Hopf numbers [J].
Aratyn, H ;
Ferreira, LA ;
Zimerman, AH .
PHYSICAL REVIEW LETTERS, 1999, 83 (09) :1723-1726
[9]  
Babelon O, 2002, J HIGH ENERGY PHYS
[10]  
BABELON O, HEPTH0210154