Near field focusing by edge diffraction

被引:12
作者
Boriskin, Artem [1 ]
Drazic, Valter [1 ]
Keating, Ray [2 ]
Damghanian, Mitra [1 ]
Shramkova, Oksana [1 ]
Blonde, Laurent [1 ]
机构
[1] Technicolor Res & Innovat, Cesson Sevigne, France
[2] Technicolor HES, Camarillo, CA 93012 USA
关键词
PHOTONIC NANOJETS; OPTICS;
D O I
10.1364/OL.43.004053
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Spherical microparticles have the ability for nonresonant focusing of light in the near field zone, forming nanojet (NJ) beams. Arbitrary-shaped microstructures, with wavelength-scale dimensions, may offer similar functionality with lower fabrication complexity. The focusing properties are ruled by the edge diffraction phenomenon. The diffraction of light on the edge of a dielectric microstructure forms a tilted focused beam whose deviation angle depends on the index ratio between the structure material and host medium. The beam geometry and field intensity enhancement can be tuned by varying the curvature of the edge line. Interference of edge diffracted waves from different segments of the edge line creates a condensed beam in the near field zone, the photonic nanojet. (C) 2018 Optical Society of America
引用
收藏
页码:4053 / 4056
页数:4
相关论文
共 20 条
[1]   High-throughput realization of an infrared selective absorber/emitter by DUV microsphere projection lithography [J].
Bonakdar, Alireza ;
Rezaei, Mohsen ;
Dexheimer, Eric ;
Mohseni, Hooman .
NANOTECHNOLOGY, 2016, 27 (03)
[2]  
Boriskina SV, 2017, OPT PHOTONICS NEWS, V28, P34, DOI 10.1364/OPN.28.9.000034
[3]   Integration of photonic nanojets and semiconductor nanoparticles for enhanced all-optical switching [J].
Born, Brandon ;
Krupa, Jeffrey D. A. ;
Geoffroy-Gagnon, Simon ;
Holzman, Jonathan F. .
NATURE COMMUNICATIONS, 2015, 6
[4]   The Wiener-Hopf Solution of the Isotropic Penetrable Wedge Problem: Diffraction and Total Field [J].
Daniele, Vito ;
Lombardi, Guido .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2011, 59 (10) :3797-3818
[5]   Enhancement of Raman scattering by two orders of magnitude using photonic nanojet of a microsphere [J].
Dantham, V. R. ;
Bisht, P. B. ;
Namboodiri, C. K. R. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (10)
[6]   Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies [J].
Darafsheh, Arash ;
Limberopoulos, Nicholaos I. ;
Derov, John S. ;
Walker, Dennis E., Jr. ;
Astratov, Vasily N. .
APPLIED PHYSICS LETTERS, 2014, 104 (06)
[7]   Combination of scanning probe technology with photonic nanojets [J].
Duocastella, Marti ;
Tantussi, Francesco ;
Haddadpour, Ali ;
Zaccaria, Remo Proietti ;
Jacassi, Andrea ;
Veronis, Georgios ;
Diaspro, Alberto ;
De Angelis, Francesco .
SCIENTIFIC REPORTS, 2017, 7
[8]   Direct imaging of photonic nanojets [J].
Ferrand, Patrick ;
Wenger, Jerome ;
Devilez, Alexis ;
Pianta, Martina ;
Stout, Brian ;
Bonod, Nicolas ;
Popov, Evgueni ;
Rigneault, Herve .
OPTICS EXPRESS, 2008, 16 (10) :6930-6940
[9]   Modeling spatially localized photonic nanojets from phase diffraction gratings [J].
Geints, Yu. E. ;
Zemlyanov, A. A. .
JOURNAL OF APPLIED PHYSICS, 2016, 119 (15)
[10]   Photonic Nanojets [J].
Heifetz, Alexander ;
Kong, Soon-Cheol ;
Sahakian, Alan V. ;
Taflove, Allen ;
Backman, Vadim .
JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2009, 6 (09) :1979-1992