Biosorption and bioaccumulation characteristics of cadmium by plant growth-promoting rhizobacteria

被引:36
|
作者
Li, Xingjie [1 ]
Li, Dongbo [1 ]
Yan, Zhenning [1 ]
Ao, Yansong [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Agr & Biol, Shanghai 200240, Peoples R China
关键词
AQUEOUS-SOLUTION; HEAVY-METALS; BINDING CHARACTERISTICS; SURFACE-ADSORPTION; SOIL BACTERIUM; CELL-WALL; COPPER; STRAIN; CU2+; MECHANISM;
D O I
10.1039/c8ra06270f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Plant growth-promoting rhizobacteria (PGPR) not only promote growth and heavy metal uptake by plants but are promising biosorbents for heavy metals remediation. However, there exist arguments over whether extracellular adsorption (biosorption) or intracellular accumulation (bioaccumulation) play dominant roles in Cd(ii) adsorption. Therefore, three cadmium-resistant PGPR, Cupriavidus necator GX_5, Sphingomonas sp. GX_15, and Curtobacterium sp. GX_31 were used to study bioaccumulation and biosorption mechanisms under different initial Cd(ii) concentrations, using batch adsorption experiments, desorption experiments, scanning electron microscopy coupled with energy dispersive X-ray (SEM-EDX) spectroscopy, transmission electron microscopy (TEM), and Fourier-transform infrared (FTIR) spectroscopy. In this study, with the increase of the initial Cd(ii) concentrations, the removal efficiency of strains decreased and the adsorption capacity improved. The highest Cd(ii) removal efficiency values were 25.05%, 53.88%, and 86.06% for GX_5, GX_15, and GX_31 with 20 mg l(-1) of Cd(ii), while the maximum adsorption capacity values were 7.97, 17.13, and 26.43 mg g(-1) of GX_5, GX_15, and GX_31 with 100 mg l(-1) of Cd(ii). Meanwhile, the removal efficiency and adsorption capacity could be ordered as GX_31 > GX_15 > GX_5. The dominant adsorption mechanism for GX_5 was bioaccumulation (50.66-60.38%), while the dominant mechanisms for GX_15 and GX_31 were biosorptions (60.29-64.89% and 75.93-79.45%, respectively). The bioaccumulation and biosorption mechanisms were verified by SEM-EDX, TEM and FTIR spectroscopy. These investigations could provide a more comprehensive understanding of metal-bacteria sorption reactions as well as practical application in remediation of heavy metals.
引用
收藏
页码:30902 / 30911
页数:10
相关论文
共 50 条
  • [41] Characterization of the Bioactive Metabolites from a Plant Growth-Promoting Rhizobacteria and Their Exploitation as Antimicrobial and Plant Growth-Promoting Agents
    George, Emrin
    Kumar, S. Nishanth
    Jacob, Jubi
    Bommasani, Bhaskara
    Lankalapalli, Ravi S.
    Morang, P.
    Kumar, B. S. Dileep
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2015, 176 (02) : 529 - 546
  • [42] Stress mitigation strategies of plant growth-promoting rhizo-bacteria: Plant growth-promoting rhizobacteria mechanisms
    Sharma, Vriti
    Singh, Aakriti
    Sharma, Diksha
    Sharma, Aashima
    Phogat, Sarika
    Chakraborty, Navjyoti
    Chatterjee, Sayan
    Purty, Ram Singh
    PLANT SCIENCE TODAY, 2021, 8 : 25 - 32
  • [43] Characterization of the Bioactive Metabolites from a Plant Growth-Promoting Rhizobacteria and Their Exploitation as Antimicrobial and Plant Growth-Promoting Agents
    Emrin George
    S. Nishanth Kumar
    Jubi Jacob
    Bhaskara Bommasani
    Ravi S. Lankalapalli
    P. Morang
    B. S. Dileep Kumar
    Applied Biochemistry and Biotechnology, 2015, 176 : 529 - 546
  • [44] Impact of plant growth-promoting rhizobacteria (PGPR) on plant nutrition and root characteristics: Current perspective
    Khoso, Muneer Ahmed
    Wagan, Sindho
    Alam, Intikhab
    Hussain, Amjad
    Ali, Qurban
    Saha, Sudipta
    Poudel, Tika Ram
    Manghwar, Hakim
    Liu, Fen
    PLANT STRESS, 2024, 11
  • [45] Remediation of Cadmium-Polluted Soil Using Plant Growth-Promoting Rhizobacteria and Natural Zeolite
    V. P. Shabayev
    E. A. Bocharnikova
    V. E. Ostroumov
    Eurasian Soil Science, 2020, 53 : 809 - 819
  • [46] Remediation of Cadmium-Polluted Soil Using Plant Growth-Promoting Rhizobacteria and Natural Zeolite
    Shabayev, V. P.
    Bocharnikova, E. A.
    Ostroumov, V. E.
    EURASIAN SOIL SCIENCE, 2020, 53 (06) : 809 - 819
  • [47] Harnessing the Duo Effect of Plant Growth-Promoting Rhizobacteria and Organic Amendments in the Phytoremediation of Cadmium: a Review
    Sarwar, Muhammad Junaid
    Shabaan, Muhammad
    Ayyub, Muhaimen
    Zahir, Zahir Ahmad
    Asghar, Hafiz Naeem
    Asif, Kashiuf
    Shareef, Aqsa
    Zulfiqar, Usman
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2025, 25 (01) : 872 - 888
  • [48] ENHANCED PLANT-GROWTH BY SIDEROPHORES PRODUCED BY PLANT GROWTH-PROMOTING RHIZOBACTERIA
    KLOEPPER, JW
    SCHROTH, MN
    LEONG, J
    TEINTZE, M
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1980, 180 (AUG): : 147 - BIOL
  • [49] ENHANCED PLANT-GROWTH BY SIDEROPHORES PRODUCED BY PLANT GROWTH-PROMOTING RHIZOBACTERIA
    KLOEPPER, JW
    LEONG, J
    TEINTZE, M
    SCHROTH, MN
    PHYTOPATHOLOGY, 1981, 71 (02) : 231 - 231
  • [50] PLANT GROWTH-PROMOTING RHIZOBACTERIA AND PLANT-GROWTH UNDER GNOTOBIOTIC CONDITIONS
    KLOEPPER, JW
    SCHROTH, MN
    PHYTOPATHOLOGY, 1981, 71 (06) : 642 - 644