Biosorption and bioaccumulation characteristics of cadmium by plant growth-promoting rhizobacteria

被引:36
|
作者
Li, Xingjie [1 ]
Li, Dongbo [1 ]
Yan, Zhenning [1 ]
Ao, Yansong [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Agr & Biol, Shanghai 200240, Peoples R China
关键词
AQUEOUS-SOLUTION; HEAVY-METALS; BINDING CHARACTERISTICS; SURFACE-ADSORPTION; SOIL BACTERIUM; CELL-WALL; COPPER; STRAIN; CU2+; MECHANISM;
D O I
10.1039/c8ra06270f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Plant growth-promoting rhizobacteria (PGPR) not only promote growth and heavy metal uptake by plants but are promising biosorbents for heavy metals remediation. However, there exist arguments over whether extracellular adsorption (biosorption) or intracellular accumulation (bioaccumulation) play dominant roles in Cd(ii) adsorption. Therefore, three cadmium-resistant PGPR, Cupriavidus necator GX_5, Sphingomonas sp. GX_15, and Curtobacterium sp. GX_31 were used to study bioaccumulation and biosorption mechanisms under different initial Cd(ii) concentrations, using batch adsorption experiments, desorption experiments, scanning electron microscopy coupled with energy dispersive X-ray (SEM-EDX) spectroscopy, transmission electron microscopy (TEM), and Fourier-transform infrared (FTIR) spectroscopy. In this study, with the increase of the initial Cd(ii) concentrations, the removal efficiency of strains decreased and the adsorption capacity improved. The highest Cd(ii) removal efficiency values were 25.05%, 53.88%, and 86.06% for GX_5, GX_15, and GX_31 with 20 mg l(-1) of Cd(ii), while the maximum adsorption capacity values were 7.97, 17.13, and 26.43 mg g(-1) of GX_5, GX_15, and GX_31 with 100 mg l(-1) of Cd(ii). Meanwhile, the removal efficiency and adsorption capacity could be ordered as GX_31 > GX_15 > GX_5. The dominant adsorption mechanism for GX_5 was bioaccumulation (50.66-60.38%), while the dominant mechanisms for GX_15 and GX_31 were biosorptions (60.29-64.89% and 75.93-79.45%, respectively). The bioaccumulation and biosorption mechanisms were verified by SEM-EDX, TEM and FTIR spectroscopy. These investigations could provide a more comprehensive understanding of metal-bacteria sorption reactions as well as practical application in remediation of heavy metals.
引用
收藏
页码:30902 / 30911
页数:10
相关论文
共 50 条
  • [31] Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture
    P. N. Bhattacharyya
    D. K. Jha
    World Journal of Microbiology and Biotechnology, 2012, 28 : 1327 - 1350
  • [32] Evaluation of plant growth-promoting rhizobacteria on stockpiled bermudagrass
    Griffin, Megan E.
    Muntifering, Russell B.
    Mullenix, Mary K.
    Held, David W.
    Dillard, Sandra L.
    CROP FORAGE & TURFGRASS MANAGEMENT, 2020, 6 (01)
  • [33] New advances in plant growth-promoting rhizobacteria for bioremediation
    Zhuang, Xuliang
    Chen, Jian
    Shim, Hojae
    Bai, Zhihui
    ENVIRONMENT INTERNATIONAL, 2007, 33 (03) : 406 - 413
  • [34] BIOTECHNOLOGICAL POTENTIAL OF SOYBEAN PLANT GROWTH-PROMOTING RHIZOBACTERIA
    de Paula, Gabriel Ferreira
    Demetrio, Gilberto Bueno
    Matsumoto, Leopoldo Sussumu
    REVISTA CAATINGA, 2021, 34 (02) : 328 - 338
  • [35] Plant growth-promoting rhizobacteria act as biostimulants in horticulture
    Ruzzi, Maurizio
    Aroca, Ricardo
    SCIENTIA HORTICULTURAE, 2015, 196 : 124 - 134
  • [36] Plant Growth-Promoting Rhizobacteria for Sustainable Agricultural Production
    de Andrade, Luana Alves
    Santos, Carlos Henrique Barbosa
    Frezarin, Edvan Teciano
    Sales, Luziane Ramos
    Rigobelo, Everlon Cid
    MICROORGANISMS, 2023, 11 (04)
  • [37] Genetic and ecological inheritance of plant growth-promoting rhizobacteria
    Khanghahi, Mohammad Yaghoubi
    Spagnuolo, Matteo
    Filannino, Pasquale
    Minervini, Fabio
    Crecchio, Carmine
    PLANT AND SOIL, 2024,
  • [38] Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture
    Bhattacharyya, P. N.
    Jha, D. K.
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2012, 28 (04): : 1327 - 1350
  • [39] Induced systemic resistance by plant growth-promoting rhizobacteria
    Pieterse, CMJ
    Van Pelt, JA
    Verhagen, BWM
    Ton, J
    Van Wees, SCM
    Léon-Kloosterziel, KM
    Van Loon, LC
    SYMBIOSIS, 2003, 35 (1-3) : 39 - 54
  • [40] Screening of plant growth-promoting rhizobacteria and their growth-promoting activities for Stipa purpurea in alpine grassland
    Yi, Guoyun
    Li, Juan
    Wang, Xin
    Cheng, Liang
    JOURNAL OF APPLIED MICROBIOLOGY, 2025, 136 (03)