Robust extraction of local structures by the minimum β-divergence method

被引:26
作者
Mollah, Md Nurul Haque [1 ,2 ]
Sultana, Nayeema [3 ]
Minami, Mihoko [5 ]
Eguchi, Shinto [1 ,4 ]
机构
[1] Inst Stat Math, Tokyo 1908562, Japan
[2] Rajshahi Univ, Dept Stat, Rajshahi 6205, Bangladesh
[3] Islamia Coll, Dept Stat, Rajshahi 6206, Bangladesh
[4] Grad Univ Adv Studies, Tokyo 1908562, Japan
[5] Keio Univ, Dept Math, Kanagawa 2238522, Japan
关键词
Local PCA; beta-divergence; Initialization of the parameters; Adaptive selection for the tuning parameter; Cross validation; Sequential estimation; PRINCIPAL COMPONENT ANALYSIS; MIXTURE; ICA;
D O I
10.1016/j.neunet.2009.11.011
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper discusses a new highly robust learning algorithm for exploring local principal component analysis (PCA) structures in which an observed data follow one of several heterogeneous PCA models. The proposed method is formulated by minimizing beta-divergence. It searches a local PCA structure based on an initial location of the shifting parameter and a value for the tuning parameter beta. If the initial choice of the shifting parameter belongs to a data cluster, then the proposed method detects the local PCA structure of that data cluster, ignoring data in other clusters as outliers. We discuss the selection procedures for the tuning parameter beta and the initial value of the shifting parameter mu in this article. We demonstrate the performance of the proposed method by simulation. Finally, we compare the proposed method with a method based on a finite mixture model. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:226 / 238
页数:13
相关论文
共 30 条