Non-modal stability of Jeffery-Hamel flow

被引:12
|
作者
Jotkar, Mamta R. [1 ,3 ]
Govindarajan, Rama [1 ,2 ]
机构
[1] TIFR Ctr Interdisciplinary Sci TCIS, 21 Osman Sagar Rd, Hyderabad 500075, Telangana, India
[2] ICTS, Survey 151, Bengaluru 560089, Karnataka, India
[3] Univ Fed Rio de Janeiro, Rio De Janeiro, Brazil
关键词
THROUGH FURROWED CHANNELS; SUBCRITICAL TRANSITION; DIVERGING CHANNEL; TRANSIENT GROWTH; PERTURBATIONS; INSTABILITY; TURBULENCE; WAVES;
D O I
10.1063/1.4983725
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The destabilization of modal perturbations in the classical diverging Jeffery-Hamel (JH) flow has been long-known. The converging JH flow is far less-studied, but it is known that convergence suppresses modal instabilities. We make a parallel-flow approximation following previous studies, to examine its non-modal stability at small convergent and divergent angles and show that non-modal growth is extremely sensitive to the angle of convergence/divergence at high Reynolds numbers. The transient growth of energy is significantly suppressed at high Reynolds numbers as the wall angle is varied from divergence to convergence by just a few hundredths of a degree. This finding is especially relevant for convergent channels, where the flow is stable to linear modal perturbations up to the Reynolds numbers of the order of 105 or larger. In all the cases, streamwise-aligned rolls (which are a characteristic of the lift-up mechanism) are the initial perturbations that display the largest energy growth. The spanwise separation between the rolls decreases significantly with channel convergence. Our findings indicate that extremely small imperfections in the wall alignment in channel flows can drastically affect the experimental measurements of algebraic growth of the disturbance kinetic energy, as minute amounts of wall convergence can strongly reduce the maximum transient growth. Published by AIP Publishing.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Some new remarks on MHD Jeffery-Hamel fluid flow problem
    Ene, Remus-Daniel
    Pop, Camelia
    OPEN PHYSICS, 2017, 15 (01): : 819 - 826
  • [42] Jeffery-Hamel Flow of Nano Fluid Influenced by Wall Slip Conditions
    Nagler, Jacob
    JOURNAL OF NANOFLUIDS, 2016, 5 (06) : 960 - 967
  • [43] Bernoulli wavelet application to the numerical solution of Jeffery-Hamel flow problem
    Vivek
    Kumar, Manoj
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2024,
  • [44] A Note on Improved Homotopy Analysis Method for Solving the Jeffery-Hamel Flow
    Motsa, Sandile Sydney
    Sibanda, Precious
    Marewo, Gerald T.
    Shateyi, Stanford
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2010, 2010
  • [45] Modified Optimal Homotopy Perturbation Method to Investigate Jeffery-Hamel Flow
    Ali, Liaqat
    Islam, Saeed
    Gul, Taza
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2019, 51 (11): : 17 - 29
  • [46] Investigation of Jeffery-Hamel flow with high magnetic field and nanoparticle by DTM
    Raghunatha, K. R.
    Siddanagowdru, S. O.
    HEAT TRANSFER, 2022, 51 (04) : 3562 - 3572
  • [47] Numerical and analytical approaches to MHD Jeffery-Hamel flow in a porous channel
    Bararnia, H.
    Ganji, Z. Z.
    Ganji, D. D.
    Moghimi, S. M.
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2012, 22 (3-4) : 491 - 502
  • [48] Analytical Investigation of Jeffery-Hamel Flow by Modified Adomian Decomposition Method
    Patel, Hardik S.
    Meher, Ramakanta
    AIN SHAMS ENGINEERING JOURNAL, 2018, 9 (04) : 599 - 606
  • [49] The Jeffery-Hamel similarity solution and its relation to flow in a diverging channel
    Haines, P. E.
    Hewitt, R. E.
    Hazel, A. L.
    JOURNAL OF FLUID MECHANICS, 2011, 687 : 404 - 430
  • [50] Ternary nanoparticles effect in rotating hydromagnetic Jeffery-Hamel flow of nanofluids
    Lemouedda, Badreddine
    Kezzar, Mohamed
    Rafique, Khuram
    Sari, Mohamed Rafik
    Tabet, Ismail
    Khan, Ilyas
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART N-JOURNAL OF NANOMATERIALS NANOENGINEERING AND NANOSYSTEMS, 2024,