Non-modal stability of Jeffery-Hamel flow

被引:12
作者
Jotkar, Mamta R. [1 ,3 ]
Govindarajan, Rama [1 ,2 ]
机构
[1] TIFR Ctr Interdisciplinary Sci TCIS, 21 Osman Sagar Rd, Hyderabad 500075, Telangana, India
[2] ICTS, Survey 151, Bengaluru 560089, Karnataka, India
[3] Univ Fed Rio de Janeiro, Rio De Janeiro, Brazil
关键词
THROUGH FURROWED CHANNELS; SUBCRITICAL TRANSITION; DIVERGING CHANNEL; TRANSIENT GROWTH; PERTURBATIONS; INSTABILITY; TURBULENCE; WAVES;
D O I
10.1063/1.4983725
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The destabilization of modal perturbations in the classical diverging Jeffery-Hamel (JH) flow has been long-known. The converging JH flow is far less-studied, but it is known that convergence suppresses modal instabilities. We make a parallel-flow approximation following previous studies, to examine its non-modal stability at small convergent and divergent angles and show that non-modal growth is extremely sensitive to the angle of convergence/divergence at high Reynolds numbers. The transient growth of energy is significantly suppressed at high Reynolds numbers as the wall angle is varied from divergence to convergence by just a few hundredths of a degree. This finding is especially relevant for convergent channels, where the flow is stable to linear modal perturbations up to the Reynolds numbers of the order of 105 or larger. In all the cases, streamwise-aligned rolls (which are a characteristic of the lift-up mechanism) are the initial perturbations that display the largest energy growth. The spanwise separation between the rolls decreases significantly with channel convergence. Our findings indicate that extremely small imperfections in the wall alignment in channel flows can drastically affect the experimental measurements of algebraic growth of the disturbance kinetic energy, as minute amounts of wall convergence can strongly reduce the maximum transient growth. Published by AIP Publishing.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Non-modal stability analysis of low-Re separated flow around a NACA 4415 airfoil in ground effect
    He, Wei
    Miguel Perez, Jose
    Yu, Peng
    Li, Larry K. B.
    AEROSPACE SCIENCE AND TECHNOLOGY, 2019, 92 : 269 - 279
  • [32] Modal and Non-Modal Stability of the Heated Flat-Plate Boundary Layer with Temperature-Dependent Viscosity
    Thummar, M.
    Bhoraniya, R.
    Narayanan, V.
    FLUID DYNAMICS, 2023, 58 (03) : 450 - 475
  • [33] Modal and Non-Modal Stability of the Heated Flat-Plate Boundary Layer with Temperature-Dependent Viscosity
    M. Thummar
    R. Bhoraniya
    V. Narayanan
    Fluid Dynamics, 2023, 58 : 450 - 475
  • [34] Non-modal transient growth of disturbances in pulsatile and oscillatory pipe flows
    Xu, Duo
    Song, Baofang
    Avila, Marc
    JOURNAL OF FLUID MECHANICS, 2021, 907
  • [35] Non-modal analysis of the diocotron instability: Cylindrical geometry
    Mikhailenko, V. V.
    Lee, Hae June
    Mikhailenko, V. S.
    Azarenkov, N. A.
    PHYSICS OF PLASMAS, 2013, 20 (04)
  • [36] Non-modal analysis of the diocotron instability: Plane geometry
    Mikhailenko, V. V.
    Lee, Hae June
    Mikhailenko, V. S.
    PHYSICS OF PLASMAS, 2012, 19 (08)
  • [37] Non-modal dynamics before flow-induced instability in fluid-structure interactions
    Coppola, G.
    de Luca, L.
    JOURNAL OF SOUND AND VIBRATION, 2010, 329 (07) : 848 - 865
  • [38] Non-modal growth of finite-amplitude disturbances in oscillatory boundary layer
    Gong, Minjiang
    Xiong, Chengwang
    Mao, Xuerui
    Cheng, Liang
    Wang, Shi-Ping
    Zhang, A-Man
    JOURNAL OF FLUID MECHANICS, 2022, 943
  • [39] Non-modal perturbation growth in a laminar jet: an experimental study
    Ivanov, O. O.
    Ashurov, D. A.
    Gareev, L. R.
    Vedeneev, V. V.
    JOURNAL OF FLUID MECHANICS, 2023, 963
  • [40] Regenerative Orr mechanism yielding large non-modal perturbation energy growth in a viscosity stratified plane shear flow
    Jose, Sharath
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2024, 181