Non-modal stability of Jeffery-Hamel flow

被引:12
|
作者
Jotkar, Mamta R. [1 ,3 ]
Govindarajan, Rama [1 ,2 ]
机构
[1] TIFR Ctr Interdisciplinary Sci TCIS, 21 Osman Sagar Rd, Hyderabad 500075, Telangana, India
[2] ICTS, Survey 151, Bengaluru 560089, Karnataka, India
[3] Univ Fed Rio de Janeiro, Rio De Janeiro, Brazil
关键词
THROUGH FURROWED CHANNELS; SUBCRITICAL TRANSITION; DIVERGING CHANNEL; TRANSIENT GROWTH; PERTURBATIONS; INSTABILITY; TURBULENCE; WAVES;
D O I
10.1063/1.4983725
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The destabilization of modal perturbations in the classical diverging Jeffery-Hamel (JH) flow has been long-known. The converging JH flow is far less-studied, but it is known that convergence suppresses modal instabilities. We make a parallel-flow approximation following previous studies, to examine its non-modal stability at small convergent and divergent angles and show that non-modal growth is extremely sensitive to the angle of convergence/divergence at high Reynolds numbers. The transient growth of energy is significantly suppressed at high Reynolds numbers as the wall angle is varied from divergence to convergence by just a few hundredths of a degree. This finding is especially relevant for convergent channels, where the flow is stable to linear modal perturbations up to the Reynolds numbers of the order of 105 or larger. In all the cases, streamwise-aligned rolls (which are a characteristic of the lift-up mechanism) are the initial perturbations that display the largest energy growth. The spanwise separation between the rolls decreases significantly with channel convergence. Our findings indicate that extremely small imperfections in the wall alignment in channel flows can drastically affect the experimental measurements of algebraic growth of the disturbance kinetic energy, as minute amounts of wall convergence can strongly reduce the maximum transient growth. Published by AIP Publishing.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] On the stability of the Jeffery-Hamel flow
    Uribe, FJ
    DiazHerrera, E
    Bravo, A
    PeraltaFabi, R
    PHYSICS OF FLUIDS, 1997, 9 (09) : 2798 - 2800
  • [2] TEMPORAL STABILITY OF JEFFERY-HAMEL FLOW
    HAMADICHE, M
    SCOTT, J
    JEANDEL, D
    JOURNAL OF FLUID MECHANICS, 1994, 268 : 71 - 88
  • [3] Temporal stability of Jeffery-Hamel flow
    Hamadiche, Mahmoud
    Scott, Julian
    Jeandel, Denis
    Journal of Fluid Mechanics, 1994, 268 : 71 - 88
  • [4] ON PERTURBATIONS OF JEFFERY-HAMEL FLOW
    BANKS, WHH
    DRAZIN, PG
    ZATURSKA, MB
    JOURNAL OF FLUID MECHANICS, 1988, 186 : 559 - 581
  • [5] Linear temporal stability of Jeffery-Hamel flow of nanofluids
    Rezaee, Danial
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2024, 107 : 1 - 16
  • [8] Magnetohydrodynamic Stability of Jeffery-Hamel Flow using Different Nanoparticles
    Alam, M. D. S.
    Khan, M. A. H.
    Alim, M. A.
    JOURNAL OF APPLIED FLUID MECHANICS, 2016, 9 (02) : 899 - 908
  • [9] SYMMETRICAL VELOCITY PROFILES FOR JEFFERY-HAMEL FLOW
    MARSHALL, RS
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1979, 46 (01): : 214 - 215
  • [10] Vortex stretching driven by Jeffery-Hamel flow
    Zaturska, MB
    Banks, WHH
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2003, 83 (02): : 85 - 92