Skewness in (1+1)-dimensional Kardar-Parisi-Zhang-type growth

被引:9
|
作者
Singha, Tapas [1 ]
Nandy, Malay K. [1 ]
机构
[1] Indian Inst Technol Guwahati, Dept Phys, Gauhati 781039, India
来源
PHYSICAL REVIEW E | 2014年 / 90卷 / 06期
关键词
RENORMALIZATION-GROUP ANALYSIS; DIRECTED POLYMERS; GROWING INTERFACES; BALLISTIC DEPOSITION; SCALE-INVARIANCE; CRYSTAL-GROWTH; RANDOM-MEDIA; ACTIVE ZONE; EDEN MODEL; SURFACE;
D O I
10.1103/PhysRevE.90.062402
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We use the (1 + 1)-dimensional Kardar-Parisi-Zhang equation driven by a Gaussian white noise and employ the dynamic renormalization-group of Yakhot and Orszag without rescaling [ J. Sci. Comput. 1, 3 (1986)]. Hence we calculate the second-and third-order moments of height distribution using the diagrammatic method in the large-scale and long-time limits. The moments so calculated lead to the value S = 0.3237 for the skewness. This value is comparable with numerical and experimental estimates.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Short-time growth of a Kardar-Parisi-Zhang interface with flat initial conditions
    Gueudre, Thomas
    Le Doussal, Pierre
    Rosso, Alberto
    Henry, Adrien
    Calabrese, Pasquale
    PHYSICAL REVIEW E, 2012, 86 (04)
  • [32] Stochastic entropies and fluctuation theorems for a discrete one-dimensional Kardar-Parisi-Zhang system
    Rodriguez, Miguel A.
    Wio, Horacio S.
    PHYSICAL REVIEW E, 2019, 100 (03)
  • [33] Kinetic roughening in the nonlocal Kardar-Parisi-Zhang growth: Pseudospectral versus finite difference schemes
    Lu, Xinyu
    Hao, Dapeng
    Xia, Hui
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 603
  • [34] Extremal paths, the stochastic heat equation, and the three-dimensional Kardar-Parisi-Zhang universality class
    Halpin-Healy, Timothy
    PHYSICAL REVIEW E, 2013, 88 (04):
  • [35] Steady-state skewness and kurtosis from renormalized cumulants in (2+1)-dimensional stochastic surface growth
    Singha, Tapas
    Nandy, Malay K.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,
  • [36] Exact Short-Time Height Distribution in the One-Dimensional Kardar-Parisi-Zhang Equation and Edge Fermions at High Temperature
    Le Doussal, Pierre
    Majumdar, Satya N.
    Rosso, Alberto
    Schehr, Gregory
    PHYSICAL REVIEW LETTERS, 2016, 117 (07)
  • [37] Simulation of 1+1 dimensional surface growth and lattices gases using GPUs
    Schulz, Henrik
    Odor, Geza
    Odor, Gergely
    Nagy, Mate Ferenc
    COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (07) : 1467 - 1476
  • [38] Static fluctuations of a thick one-dimensional interface in the 1+1 directed polymer formulation
    Agoritsas, Elisabeth
    Lecomte, Vivien
    Giamarchi, Thierry
    PHYSICAL REVIEW E, 2013, 87 (04)
  • [39] Growth with surface diffusion in d=1+1
    Hontinfinde, F
    Krug, J
    Touzani, M
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1997, 237 (3-4) : 363 - 383
  • [40] Universality and crossover behavior of single-step growth models in 1+1 and 2+1 dimensions
    Daryaei, E.
    PHYSICAL REVIEW E, 2020, 101 (06)