Skewness in (1+1)-dimensional Kardar-Parisi-Zhang-type growth

被引:9
|
作者
Singha, Tapas [1 ]
Nandy, Malay K. [1 ]
机构
[1] Indian Inst Technol Guwahati, Dept Phys, Gauhati 781039, India
来源
PHYSICAL REVIEW E | 2014年 / 90卷 / 06期
关键词
RENORMALIZATION-GROUP ANALYSIS; DIRECTED POLYMERS; GROWING INTERFACES; BALLISTIC DEPOSITION; SCALE-INVARIANCE; CRYSTAL-GROWTH; RANDOM-MEDIA; ACTIVE ZONE; EDEN MODEL; SURFACE;
D O I
10.1103/PhysRevE.90.062402
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We use the (1 + 1)-dimensional Kardar-Parisi-Zhang equation driven by a Gaussian white noise and employ the dynamic renormalization-group of Yakhot and Orszag without rescaling [ J. Sci. Comput. 1, 3 (1986)]. Hence we calculate the second-and third-order moments of height distribution using the diagrammatic method in the large-scale and long-time limits. The moments so calculated lead to the value S = 0.3237 for the skewness. This value is comparable with numerical and experimental estimates.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Dimensional crossover in Kardar-Parisi-Zhang growth
    Carrasco, Ismael S. S.
    Oliveira, Tiago J.
    PHYSICAL REVIEW E, 2024, 109 (04)
  • [2] Directed d-mer diffusion describing the Kardar-Parisi-Zhang-type surface growth
    Odor, Geza
    Liedke, Bartosz
    Heinig, Karl-Heinz
    PHYSICAL REVIEW E, 2010, 81 (03)
  • [3] Temperature effect on (2+1) experimental Kardar-Parisi-Zhang growth
    Almeida, R. A. L.
    Ferreira, S. O.
    Ribeiro, I. R. B.
    Oliveira, T. J.
    EPL, 2015, 109 (04)
  • [4] The 1 + 1 dimensional Kardar-Parisi-Zhang equation: more surprises
    Spohn, Herbert
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2020, 2020 (04):
  • [5] Kardar-Parisi-Zhang growth on square domains that enlarge nonlinearly in time
    Carrasco, Ismael S. S.
    Oliveira, Tiago J.
    PHYSICAL REVIEW E, 2022, 105 (05)
  • [6] Kardar-Parisi-Zhang Interfaces with Inward Growth
    Fukai, Yohsuke T.
    Takeuchi, Kazumasa A.
    PHYSICAL REVIEW LETTERS, 2017, 119 (03)
  • [7] Universal correlators and distributions as experimental signatures of (2+1)-dimensional Kardar-Parisi-Zhang growth
    Halpin-Healy, Timothy
    Palasantzas, George
    EPL, 2014, 105 (05)
  • [8] Kardar-Parisi-Zhang growth in ε dimensions and beyond
    Halpin-Healy, Timothy
    PHYSICAL REVIEW E, 2025, 111 (01)
  • [9] Large deviations for the height in 1D Kardar-Parisi-Zhang growth at late times
    Le Doussal, Pierre
    Majumdar, Satya N.
    Schehr, Gregory
    EPL, 2016, 113 (06)
  • [10] Hyperskewness of (1+1)-dimensional KPZ height fluctuations
    Singha, Tapas
    Nandy, Malay K.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,