Background Here, we conducted a scoping review to (i) establish which machine learning (ML) methods have been applied to hematological malignancy imaging; (ii) establish how ML is being applied to hematological cancer radiology; and (iii) identify addressable research gaps.Methods The review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Extension for Scoping Reviews guidelines. The inclusion criteria were (i) pediatric and adult patients with suspected or confirmed hematological malignancy undergoing imaging (population); (ii) any study using ML techniques to derive models using radiological images to apply to the clinical management of these patients (concept); and (iii) original research articles conducted in any setting globally (context). Quality Assessment of Diagnostic Accuracy Studies 2 criteria were used to assess diagnostic and segmentation studies, while the Newcastle-Ottawa scale was used to assess the quality of observational studies.Results Of 53 eligible studies, 33 applied diverse ML techniques to diagnose hematological malignancies or to differentiate them from other diseases, especially discriminating gliomas from primary central nervous system lymphomas (n=18); 11 applied ML to segmentation tasks, while 9 applied ML to prognostication or predicting therapeutic responses, especially for diffuse large B-cell lymphoma. All studies reported discrimination statistics, but no study calculated calibration statistics. Every diagnostic/segmentation study had a high risk of bias due to their case-control design; many studies failed to provide adequate details of the reference standard; and only a few studies used independent validation.Conclusion To deliver validated ML-based models to radiologists managing hematological malignancies, future studies should (i) adhere to standardized, high-quality reporting guidelines such as the Checklist for Artificial Intelligence in Medical Imaging; (ii) validate models in independent cohorts; (ii) standardize volume segmentation methods for segmentation tasks; (iv) establish comprehensive prospective studies that include different tumor grades, comparisons with radiologists, optimal imaging modalities, sequences, and planes; (v) include side-by-side comparisons of different methods; and (vi) include low- and middle-income countries in multicentric studies to enhance generalizability and reduce inequity.
机构:
Univ Paris Cite, Univ Sorbonne Paris Nord, Ctr Res Epidemiol & Stat CRESS, INSERM,INRAE, Paris, FranceUniv Paris Cite, Univ Sorbonne Paris Nord, Ctr Res Epidemiol & Stat CRESS, INSERM,INRAE, Paris, France
Balendran, Alan
Beji, Celine
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Cite, Univ Sorbonne Paris Nord, Ctr Res Epidemiol & Stat CRESS, INSERM,INRAE, Paris, FranceUniv Paris Cite, Univ Sorbonne Paris Nord, Ctr Res Epidemiol & Stat CRESS, INSERM,INRAE, Paris, France
Beji, Celine
Bouvier, Florie
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Cite, Univ Sorbonne Paris Nord, Ctr Res Epidemiol & Stat CRESS, INSERM,INRAE, Paris, FranceUniv Paris Cite, Univ Sorbonne Paris Nord, Ctr Res Epidemiol & Stat CRESS, INSERM,INRAE, Paris, France
Bouvier, Florie
Khalifa, Ottavio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Cite, Univ Sorbonne Paris Nord, Ctr Res Epidemiol & Stat CRESS, INSERM,INRAE, Paris, FranceUniv Paris Cite, Univ Sorbonne Paris Nord, Ctr Res Epidemiol & Stat CRESS, INSERM,INRAE, Paris, France
Khalifa, Ottavio
Evgeniou, Theodoros
论文数: 0引用数: 0
h-index: 0
机构:
INSEAD Decis Sci, Fontainebleau, FranceUniv Paris Cite, Univ Sorbonne Paris Nord, Ctr Res Epidemiol & Stat CRESS, INSERM,INRAE, Paris, France
Evgeniou, Theodoros
Ravaud, Philippe
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Cite, Univ Sorbonne Paris Nord, Ctr Res Epidemiol & Stat CRESS, INSERM,INRAE, Paris, France
Hop Hotel Dieu, Assistance Publ Hop Paris, Ctr Epidemiol Clin, Paris, France
Columbia Univ, Mailman Sch Publ Hlth, Dept Epidemiol, New York, NY USAUniv Paris Cite, Univ Sorbonne Paris Nord, Ctr Res Epidemiol & Stat CRESS, INSERM,INRAE, Paris, France
Ravaud, Philippe
Porcher, Raphael
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Cite, Univ Sorbonne Paris Nord, Ctr Res Epidemiol & Stat CRESS, INSERM,INRAE, Paris, France
Hop Hotel Dieu, Assistance Publ Hop Paris, Ctr Epidemiol Clin, Paris, FranceUniv Paris Cite, Univ Sorbonne Paris Nord, Ctr Res Epidemiol & Stat CRESS, INSERM,INRAE, Paris, France
机构:
Fujian Med Univ, Coll Clin Med Obstet & Gynecol & Pediat, Fuzhou, Peoples R China
Fujian Matern & Child Hlth Hosp, Dept Gynecol, Fuzhou, Peoples R ChinaFujian Med Univ, Coll Clin Med Obstet & Gynecol & Pediat, Fuzhou, Peoples R China
Wang, Qi
Wang, Xiaoxiao
论文数: 0引用数: 0
h-index: 0
机构:
Fujian Med Univ, Coll Clin Med Obstet & Gynecol & Pediat, Fuzhou, Peoples R China
Fujian Matern & Child Hlth Hosp, Dept Gynecol, Fuzhou, Peoples R ChinaFujian Med Univ, Coll Clin Med Obstet & Gynecol & Pediat, Fuzhou, Peoples R China
Wang, Xiaoxiao
Jiang, Xiaoxiang
论文数: 0引用数: 0
h-index: 0
机构:
Fujian Prov Key Lab Women & Childrens Crit Dis Res, 568 Banzhong Rd, Fuzhou 350012, Peoples R ChinaFujian Med Univ, Coll Clin Med Obstet & Gynecol & Pediat, Fuzhou, Peoples R China
Jiang, Xiaoxiang
Lin, Chaoqin
论文数: 0引用数: 0
h-index: 0
机构:
Fujian Med Univ, Coll Clin Med Obstet & Gynecol & Pediat, Fuzhou, Peoples R China
Fujian Matern & Child Hlth Hosp, Dept Gynecol, Fuzhou, Peoples R ChinaFujian Med Univ, Coll Clin Med Obstet & Gynecol & Pediat, Fuzhou, Peoples R China