SUPERPIXEL-BASED MARKOV RANDOM FIELD FOR CLASSIFICATION OF HYPERSPECTRAL IMAGES

被引:22
作者
Li, Shanshan [1 ]
Jia, Xiuping [2 ]
Zhang, Bing [1 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing, Peoples R China
[2] Univ New S Wales, Australian Def Force Acad, Canberra, ACT, Australia
来源
2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2013年
关键词
Hyperspectral; MRF; superpixel; classification;
D O I
10.1109/IGARSS.2013.6723581
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The paper presents a supervised classification method based on superpixels and Markov random field (MRF). Hyperspectral image is over-segmented into superpixels that are as basic unit of Markov random field instead of operating at the pixel level. Adaptive weight coefficient is introduced to determine contextual relationship between superpixels. Support vector machines are implemented for better estimation of spectral contribution to this approach. An experiment of real hyperspectral image reveals efficient performance.
引用
收藏
页码:3491 / 3493
页数:3
相关论文
共 8 条
[1]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[2]  
Aksoy S., 2006, Signal and Image Processing for Remote Sensing, chapter Spatial techniques for image classification, P491
[3]   Classification and feature extraction for remote sensing images from urban areas based on morphological transformations [J].
Benediktsson, JA ;
Pesaresi, M ;
Arnason, K .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (09) :1940-1949
[4]   Recent advances in techniques for hyperspectral image processing [J].
Plaza, Antonio ;
Benediktsson, Jon Atli ;
Boardman, Joseph W. ;
Brazile, Jason ;
Bruzzone, Lorenzo ;
Camps-Valls, Gustavo ;
Chanussot, Jocelyn ;
Fauvel, Mathieu ;
Gamba, Paolo ;
Gualtieri, Anthony ;
Marconcini, Mattia ;
Tilton, James C. ;
Trianni, Giovanna .
REMOTE SENSING OF ENVIRONMENT, 2009, 113 :S110-S122
[5]   SVM- and MRF-Based Method for Accurate Classification of Hyperspectral Images [J].
Tarabalka, Yuliya ;
Fauvel, Mathieu ;
Chanussot, Jocelyn ;
Benediktsson, Jon Atli .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2010, 7 (04) :736-740
[6]   Adaptive Markov Random Field Approach for Classification of Hyperspectral Imagery [J].
Zhang, Bing ;
Li, Shanshan ;
Jia, Xiuping ;
Gao, Lianru ;
Peng, Man .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (05) :973-977
[7]  
Zhang G., 2011, IM SIGN PROC CISP 20, P1680
[8]   Simplified Conditional Random Fields With Class Boundary Constraint for Spectral-Spatial Based Remote Sensing Image Classification [J].
Zhang, Guangyun ;
Jia, Xiuping .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2012, 9 (05) :856-860