共 30 条
Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity
被引:254
作者:
Hamilton, Raymond F., Jr.
[1
]
Wu, Nianqiang
[2
]
Porter, Dale
[3
]
Buford, Mary
[1
]
Wolfarth, Michael
[3
]
Holian, Andrij
[1
]
机构:
[1] Univ Montana, Ctr Environm Hlth Sci, Missoula, MT 59812 USA
[2] W Virginia Univ, WV Nano Initiat, Morgantown, WV 26506 USA
[3] NIOSH, Hlth Effects Lab Div, Morgantown, WV USA
来源:
PARTICLE AND FIBRE TOXICOLOGY
|
2009年
/
6卷
关键词:
ALVEOLAR MACROPHAGES;
INHALATION EXPOSURE;
NALP3;
INFLAMMASOME;
CARBON NANOTUBES;
NANOPARTICLES;
CELLS;
RATS;
RESPONSES;
MICE;
SIZE;
D O I:
10.1186/1743-8977-6-35
中图分类号:
R99 [毒物学(毒理学)];
学科分类号:
100405 ;
摘要:
Background: Titanium dioxide (TiO2) nanomaterials have considerable beneficial uses as photocatalysts and solar cells. It has been established for many years that pigment-grade TiO2 (200 nm sphere) is relatively inert when internalized into a biological model system (in vivo or in vitro). For this reason, TiO2 nanomaterials are considered an attractive alternative in applications where biological exposures will occur. Unfortunately, metal oxides on the nanoscale (one dimension < 100 nm) may or may not exhibit the same toxic potential as the original material. A further complicating issue is the effect of modifying or engineering of the nanomaterial to be structurally and geometrically different from the original material. Results: TiO2 nanospheres, short (< 5 mu m) and long (> 15 mu m) nanobelts were synthesized, characterized and tested for biological activity using primary murine alveolar macrophages and in vivo in mice. This study demonstrates that alteration of anatase TiO2 nanomaterial into a fibre structure of greater than 15 mu m creates a highly toxic particle and initiates an inflammatory response by alveolar macrophages. These fibre-shaped nanomaterials induced inflammasome activation and release of inflammatory cytokines through a cathepsin B-mediated mechanism. Consequently, long TiO2 nanobelts interact with lung macrophages in a manner very similar to asbestos or silica. Conclusions: These observations suggest that any modification of a nanomaterial, resulting in a wire, fibre, belt or tube, be tested for pathogenic potential. As this study demonstrates, toxicity and pathogenic potential change dramatically as the shape of the material is altered into one that a phagocytic cell has difficulty processing, resulting in lysosomal disruption.
引用
收藏
页数:11
相关论文