Vertex pancyclicity over lexicographic products

被引:1
作者
Muaengwaeng, Artchariya [1 ]
Boonklurb, Ratinan [1 ]
Singhun, Sirirat [2 ]
机构
[1] Chulalongkorn Univ, Dept Math & Comp Sci, Fac Sci, Bangkok, Thailand
[2] Ramkhamhang Univ, Dept Math, Fac Sci, Bangkok, Thailand
关键词
Traceble; hamiltonian; vertex pancyclic; lexicographic product;
D O I
10.1080/09728600.2022.2059416
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A lexicographic product of graphs G and H, denoted by G omicron H, is defined as a graph with the vertex set V(G) x V(H) and an edge {(u(1), v(1)), (u(2), v(2))} presents in the product whenever u(1)u(2) is an element of E(G) or (u(1) = u(2) and v(1)v(2) is an element of E(H)). We investigate the sufficient conditions for vertex pancyclicity of lex- icographic products of complete graphs K-n, paths P-n or cycles C-n with a general graph. We obtain that (i) if G(1) is a traceable graph of even order and G(2) is a graph with at least one edge, then G(1) omicron G(2) is vertex pancyclic; (ii) if G(1) is hamiltonian and G(2) is a graph with at least one edge, then G(1) omicron G(2) is vertex pancyclic.
引用
收藏
页码:79 / 86
页数:8
相关论文
共 11 条
[1]  
Bondy J. A., 1971, Journal of Combinatorial Theory, Series B, V11, P80
[2]  
Bondy J A., 1971, Proceedings of the Second Louisiana Conference on Combinatorics, Graph Theory and Computing, P167
[3]   Hamiltonicity and pancyclicity of cartesian products of graphs [J].
Cada, Roman ;
Flandrin, Evelyne ;
Li, Hao .
DISCRETE MATHEMATICS, 2009, 309 (22) :6337-6343
[4]  
CAI XT, 1984, SCI SIN A-MATH P A T, V27, P684
[5]   Pancyclicity of the prism [J].
Goddard, W ;
Henning, MA .
DISCRETE MATHEMATICS, 2001, 234 (1-3) :139-142
[6]   On the pancyclicity of lexicographic products [J].
Kaiser, T ;
Kriesell, M .
GRAPHS AND COMBINATORICS, 2006, 22 (01) :51-58
[7]  
Ore O., 1960, American Mathematical Monthly, V67, P55, DOI [10.2307/2308928, DOI 10.2307/2308928]
[8]   A CHARACTERIZATION OF HAMILTONIAN PRISMS [J].
PAULRAJA, P .
JOURNAL OF GRAPH THEORY, 1993, 17 (02) :161-171
[9]   Vertex pancyclic graphs [J].
Randerath, B ;
Schiermeyer, I ;
Tewes, M ;
Volkmann, L .
DISCRETE APPLIED MATHEMATICS, 2002, 120 (1-3) :219-237
[10]  
Rosenfeld M., 1973, Discrete Mathematics, V5, P389, DOI 10.1016/0012-365X(73)90132-5