The Lempert function of the symmetrized polydisc in higher dimensions is not a distance

被引:23
作者
Nikolov, Nikolai [1 ]
Pflug, Peter
Zwonek, Wlodzimierz
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, BU-1113 Sofia, Bulgaria
[2] Carl von Ossietzky Univ Oldenburg, Fachbereich Math, D-26111 Oldenburg, Germany
[3] Jagiellonian Univ, Inst Matemat, PL-30059 Krakow, Poland
关键词
symmetrized polydisc; Caratheodory distance and metric; Kobayashi distance and metric; Lempert function;
D O I
10.1090/S0002-9939-07-08817-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the Lempert function of the symmetrized polydisc in dimension greater than two is not a distance.
引用
收藏
页码:2921 / 2928
页数:8
相关论文
共 12 条
[1]   The hyperbolic geometry of the symmetrized bidisc [J].
Agler, J ;
Young, NJ .
JOURNAL OF GEOMETRIC ANALYSIS, 2004, 14 (03) :375-403
[2]   On the spectral Nevanlinna-Pick problem [J].
Costara, C .
STUDIA MATHEMATICA, 2005, 170 (01) :23-55
[3]   The symmetrized bidisc and Lempert's theorem [J].
Costara, C .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2004, 36 :656-662
[4]  
COSTARA C, 2004, THESIS U LAVAL
[5]   Geometry of the symmetrized polydisc [J].
Edigarian, A ;
Zwonek, W .
ARCHIV DER MATHEMATIK, 2005, 84 (04) :364-374
[6]  
Edigarian A., 2004, Ann. Polon. Math, V83, P189
[7]  
JARNICKI M, 2005, DISS MATH, V430, P1
[9]  
LEMPERT L, 1981, B SOC MATH FR, V109, P427
[10]  
Nikolov, 2006, ANN POL MATH, V88, P279, DOI DOI 10.4064/ap88-3-7