SHARP BILINEAR ESTIMATES AND WELL POSEDNESS FOR THE 1-D SCHRODINGER-DEBYE SYSTEM

被引:0
|
作者
Corcho, Adan J. [1 ]
Matheus, Carlos [2 ]
机构
[1] Univ Fed Alagoas, Inst Matemat, BR-57072900 Maceio, AL, Brazil
[2] Coll France, Paris 05, France
关键词
EQUATIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish local and global well posedness for the initial-value problem associated to the one-dimensional Schrodinger-Debye(SD) system for data in Sobolev spaces with low regularity. To obtain local results we prove two new sharp bilinear estimates for the coupling terms of this system in the continuous and periodic cases. Concerning global results, in the continuous case, the system is shown to be globally well posed in H(s) x H(s), -3/14 < s < 0. For initial data in Sobolev spaces with high regularity (H(s) x H(s), s > 5/2), Bidegaray [4] proved that there are one-parameter families of solutions of the SD system converging to certain solutions of the cubic nonlinear Schrodinger equation (NLS). Our results below L(2) x L(2) say that the SD system is not a good approach to the cubic NLS in Sobolev spaces with low regularity, since the cubic NLS is known to be ill posed below L(2). The proof of our global result uses the I-method introduced by Colliander, Keel, Staffilani, Takaoka and Tao.
引用
收藏
页码:357 / 391
页数:35
相关论文
共 50 条
  • [1] Global well-posedness for the critical Schrodinger-Debye system
    Carvajal, Xavier
    Gamboa, Pedro
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2014, 11 (03) : 251 - 268
  • [2] LOCAL AND GLOBAL WELL-POSEDNESS FOR THE CRITICAL SCHRODINGER-DEBYE SYSTEM
    Corcho, Adan J.
    Oliveira, Filipe
    Silva, Jorge Drumond
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (10) : 3485 - 3499
  • [3] Scattering theory for the Schrodinger-Debye system
    Correia, Simao
    Oliveira, Filipe
    NONLINEARITY, 2018, 31 (07) : 3203 - 3227
  • [4] Well-posedness for the Schrodinger-improved Boussinesq system and related bilinear estimates
    Akahori, Takafumi
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2007, 50 (03): : 469 - 489
  • [5] ON THE SCHRODINGER-DEBYE SYSTEM IN COMPACT RIEMANNIAN MANIFOLDS
    Nogueira, Marcelo
    Panthee, Mahendra
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (01) : 425 - 453
  • [6] Global well-posedness results for the 2D-Schrodinger-Debye system
    dos Santos, Raphael Antunes
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 472 (01) : 22 - 45
  • [7] Numerical study of self-focusing solutions to the Schrodinger-Debye system
    Besse, C
    Bidégaray, B
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (01): : 35 - 55
  • [8] SHARP WELL-POSEDNESS RESULTS FOR THE SCHRODINGER-BENJAMIN-ONO SYSTEM
    Domingues, Leandro
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2016, 21 (1-2) : 31 - 54
  • [9] Rapid stabilization of a linearized bilinear 1-D Schrodinger equation
    Coron, Jean-Michel
    Gagnon, Ludovick
    Morancey, Morgan
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 115 : 24 - 73
  • [10] Asymptotic behavior of the Schrodinger-Debye system with refractive index of quadratic wave amplitude
    Corcho, Adan J.
    Cordero, Juan C.
    LETTERS IN MATHEMATICAL PHYSICS, 2018, 108 (09) : 2031 - 2054