Majorizing functions and two-point Newton-type methods

被引:10
|
作者
Chen, Jinhai [1 ]
Argyros, Ioannis K. [2 ]
Agarwal, Ravi P. [3 ]
机构
[1] Univ Colorado, Dept Math & Stat Sci, Denver, CO 80217 USA
[2] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
[3] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA
关键词
Newton-type method; Banach space; Semi-local convergence; Lipschitz condition; Frechet derivative; Majorizing sequences; CONVERGENCE; THEOREM;
D O I
10.1016/j.cam.2010.02.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The semi-local convergence of a Newton-type method used to solve nonlinear equations in a Banach space is studied. We also give, as two important applications, convergence analyses of two classes of two-point Newton-type methods including a method mentioned in [5] and the midpoint method studied in [1,2,12]. Recently, interest has been shown in such methods [3,4]. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1473 / 1484
页数:12
相关论文
共 50 条
  • [41] A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space
    Argyros, IK
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 298 (02) : 374 - 397
  • [42] Newton-type methods on Riemannian manifolds under Kantorovich-type conditions
    Amat, S.
    Argyros, I. K.
    Busquier, S.
    Castro, R.
    Hilout, S.
    Plaza, S.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 227 : 762 - 787
  • [43] Critical solutions of nonlinear equations: local attraction for Newton-type methods
    Izmailov, A. F.
    Kurennoy, A. S.
    Solodov, M. V.
    MATHEMATICAL PROGRAMMING, 2018, 167 (02) : 355 - 379
  • [44] Modified Newton-Type Iteration Methods for Generalized Absolute Value Equations
    An Wang
    Yang Cao
    Jing-Xian Chen
    Journal of Optimization Theory and Applications, 2019, 181 : 216 - 230
  • [45] Modified Newton-Type Iteration Methods for Generalized Absolute Value Equations
    Wang, An
    Cao, Yang
    Chen, Jing-Xian
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 181 (01) : 216 - 230
  • [46] Newton-type methods of high order and domains of semilocal and global convergence
    Ezquerro, J. A.
    Hernandez, M. A.
    Romero, N.
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 214 (01) : 142 - 154
  • [47] ON THE SEMILOCAL CONVERGENCE OF A NEWTON-TYPE METHOD OF ORDER THREE
    Argyros, Ioannis K.
    Hilout, Said
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2010, 17 (01): : 1 - 27
  • [48] On the convergence of an inexact Newton-type method
    Zhou, Guanglu
    Qi, Liqun
    OPERATIONS RESEARCH LETTERS, 2006, 34 (06) : 647 - 652
  • [49] A GENERAL CONVERGENCE ANALYSIS OF SOME NEWTON-TYPE METHODS FOR NONLINEAR INVERSE PROBLEMS
    Jin, Qinian
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (02) : 549 - 573
  • [50] Weaker Kantorovich type criteria for inexact Newton methods
    Argyros, I. K.
    Khattri, S. K.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 261 : 103 - 117