Majorizing functions and two-point Newton-type methods

被引:10
|
作者
Chen, Jinhai [1 ]
Argyros, Ioannis K. [2 ]
Agarwal, Ravi P. [3 ]
机构
[1] Univ Colorado, Dept Math & Stat Sci, Denver, CO 80217 USA
[2] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
[3] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA
关键词
Newton-type method; Banach space; Semi-local convergence; Lipschitz condition; Frechet derivative; Majorizing sequences; CONVERGENCE; THEOREM;
D O I
10.1016/j.cam.2010.02.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The semi-local convergence of a Newton-type method used to solve nonlinear equations in a Banach space is studied. We also give, as two important applications, convergence analyses of two classes of two-point Newton-type methods including a method mentioned in [5] and the midpoint method studied in [1,2,12]. Recently, interest has been shown in such methods [3,4]. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1473 / 1484
页数:12
相关论文
共 50 条
  • [21] Newton-type regularization methods for nonlinear inverse problems
    Jin, Qinian
    19TH INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION (MODSIM2011), 2011, : 385 - 391
  • [22] On local convergence of a Newton-type method in Banach space
    Argyros, Ioannis K.
    Chen, Jinhai
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2009, 86 (08) : 1366 - 1374
  • [23] Newton-type interior-point methods for solving generalized complementarity problems in polyhedral cones
    Andreani, R.
    Santos, S. A.
    Shirabayashi, W. V. I.
    OPTIMIZATION, 2011, 60 (8-9) : 1171 - 1191
  • [24] On a two-step relaxed Newton-type method
    Amat, S.
    Magrenan, A. A.
    Romero, N.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (24) : 11341 - 11357
  • [25] Convergence analysis for single point Newton-type iterative schemes
    Argyros, Ioannis K.
    George, Santhosh
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2020, 62 (1-2) : 55 - 65
  • [26] Extended Newton-type method for nonlinear functions with values in a cone
    G. N. Silva
    P. S. M. Santos
    S. S. Souza
    Computational and Applied Mathematics, 2018, 37 : 5082 - 5097
  • [27] Extended Newton-type method for nonlinear functions with values in a cone
    Silva, G. N.
    Santos, P. S. M.
    Souza, S. S.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (04) : 5082 - 5097
  • [28] Convergence analysis for single point Newton-type iterative schemes
    Ioannis K. Argyros
    Santhosh George
    Journal of Applied Mathematics and Computing, 2020, 62 : 55 - 65
  • [29] Multivariate Two-Point Padé-Type and Two-Point Padé Approximants
    J. Abouir
    A. Cuyt
    R. Orive
    Numerical Algorithms, 2003, 33 : 11 - 26
  • [30] On the local convergence of inexact Newton-type methods under residual control-type conditions
    Ren, Hongmin
    Argyros, Ioannis K.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 235 (01) : 218 - 228