BOULIGAND-LEVENBERG-MARQUARDT ITERATION FOR A NON-SMOOTH ILL-POSED INVERSE PROBLEM

被引:16
作者
Clason, Christian [1 ]
Vu Huu Nhu [1 ]
机构
[1] Univ Duisburg Essen, Fac Math, Thea Leymann Str 9, D-45127 Essen, Germany
来源
ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS | 2019年 / 51卷
关键词
inverse problem; iterative regularization; Levenberg-Marquardt method; non-smooth equation; LANDWEBER ITERATION; BANACH-SPACES; REGULARIZATION;
D O I
10.1553/etna_vol51s274
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a modified Levenberg-Marquardt method for solving an ill-posed inverse problem where the forward mapping is not Gateaux differentiable. By relaxing the standard assumptions for the classical smooth setting, we derive asymptotic stability estimates which are then used to prove convergence of the proposed method. This method can be applied to an inverse source problem for a non-smooth semilinear elliptic PDE where a Bouligand subdifferential can be used in place of the non-existing Frechet derivative, and we show that the corresponding Bouligand-Levenberg-Marquardt iteration is an iterative regularization scheme. Numerical examples illustrate the advantage over the corresponding Bouligand-Landweber iteration.
引用
收藏
页码:274 / 314
页数:41
相关论文
共 30 条
[1]  
[Anonymous], 2012, GRADUATE TEXTS MATH
[2]  
[Anonymous], 2010, GRADE STUD MATH
[3]  
Brill M, 1987, APPL GEOPHYS, V1, P13
[4]   OPTIMAL CONTROL OF A NON-SMOOTH SEMILINEAR ELLIPTIC EQUATION [J].
Christof, Constantin ;
Meyer, Christian ;
Walther, Stephan ;
Clason, Christian .
MATHEMATICAL CONTROL AND RELATED FIELDS, 2018, 8 (01) :247-276
[5]   Bouligand-Landweber iteration for a non-smooth ill-posed problem [J].
Clason, Christian ;
Vu Huu Nhu .
NUMERISCHE MATHEMATIK, 2019, 142 (04) :789-832
[6]  
Engl H. W., 1996, REGULARIZATION INVER
[7]  
Glowinski R., 1984, NUMERICAL METHODS NO
[8]   Nonstationary iterated Tikhonov regularization [J].
Hanke, M ;
Groetsch, CW .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1998, 98 (01) :37-53
[9]   A regularizing Levenberg-Marquardt scheme, with applications to inverse groundwater filtration problems [J].
Hanke, M .
INVERSE PROBLEMS, 1997, 13 (01) :79-95
[10]  
JIN Q, 2016, INVERSE PROBL, V32