Semi-stable model of the Siegel variety of genus 3 with a Γ0(p)-level structure

被引:14
作者
Genestier, A [1 ]
机构
[1] Univ Paris Sud, CNRS, URA 752, F-91405 Orsay, France
关键词
Shimura varieties (Siegel variety); Rapoport-Zink's local model; Grassmann variety of Lagrangian subspaces; Schubert varieties; semi-stable model;
D O I
10.1023/A:1002021523162
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S(g,N,p) be the Siegel modular variety of principally polarized Abelian varieties of dimension g with a Gamma (0)(p)-level structure and a full N-level structure (where p is a prime not dividing N greater than or equal to3 and Gamma (0)(p) is the inverse image of a Borel subgroup of Sp(2g, F-p) in Sp(2g, Z)). This variety has a natural integral model over Z[1/N] which is not semi-stable over the prime p if g >1. Using the theory of local models of Rapoport-Zink, we construct a semi-stable integral model of S(g,N,p) over Z[1/N] for g=2 and g=3. For g=2, our construction differs from de Jong's one though the resulting model is the same.
引用
收藏
页码:303 / 328
页数:26
相关论文
共 18 条
[1]  
[Anonymous], 1996, ANN MATH STUD
[2]  
BOUTOT JF, 1991, ASTERISQUE, P45
[3]   BAD REDUCTION OF THE SIEGEL MODULI SCHEME OF GENUS 2 WITH GAMMA-0(P)-LEVEL STRUCTURE [J].
CHAI, CL ;
NORMAN, P .
AMERICAN JOURNAL OF MATHEMATICS, 1990, 112 (06) :1003-1071
[4]  
de Jong A.J., 1993, J ALGEBRAIC GEOM, V2, P667
[5]  
DELIGNE P, 1994, COMPOS MATH, V90, P59
[6]  
Gruson Laurent., 1971, INVENT MATH, V13, P1
[7]  
Hartshorne R., 1977, Graduate Texts in Mathematics
[8]  
Kazhdan G., 1980, P S PURE MATH, V34, P185
[9]  
Knutson D., 1971, LECT NOTES MATH, V203
[10]   GEOMETRY OF G-P-2 - WORK OF DE CONCINI AND PROCESI AND BASIC CONJECTURES [J].
LAKSHMIBAI, V ;
SESHADRI, CS .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES SECTION A, 1978, 87 (02) :1-54