Graphs drawn with few crossings per edge

被引:177
作者
Pach, J [1 ]
Toth, G
机构
[1] NYU, Courant Inst, New York, NY 10012 USA
[2] Hungarian Acad Sci, H-1051 Budapest, Hungary
基金
美国国家科学基金会;
关键词
05C10;
D O I
10.1007/BF01215922
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that if a graph of v vertices can be drawn in the plane so that every edge crosses at most k > 0 others, then its number of edges cannot exceed 4.108 root kv. For k less than or equal to 4, we establish a better bound, (k + 3)(v - 2), which is tight for k = 1 and 2. We apply these estimates to improve a result of Ajtai et al. and Leighton, providing a general lower bound for the crossing number of a graph in terms of its number of vertices and edges.
引用
收藏
页码:427 / 439
页数:13
相关论文
共 9 条
[1]  
[Anonymous], 1982, Annals of Discrete Mathematics
[2]   COMBINATORIAL COMPLEXITY-BOUNDS FOR ARRANGEMENTS OF CURVES AND SPHERES [J].
CLARKSON, KL ;
EDELSBRUNNER, H ;
GUIBAS, LJ ;
SHARIR, M ;
WELZL, E .
DISCRETE & COMPUTATIONAL GEOMETRY, 1990, 5 (02) :99-160
[3]  
Hardy G.H., 1954, INTRO THEORY NUMBERS
[4]  
Leighton T., 1983, Complexity Issues in VLSI, Foundations of Computer Series
[5]  
PACH J, 1995, COMBINATORIAL GEOMET
[6]  
PACH J, IN PRESS COMBINATORI
[7]  
SPENCER J, 1997, UNPUB MIDRANGE CROSS
[8]  
SZEKELY L, IN PRESS COMBINATORI
[9]   EXTREMAL PROBLEMS IN DISCRETE GEOMETRY [J].
SZEMEREDI, E ;
TROTTER, WT .
COMBINATORICA, 1983, 3 (3-4) :381-392