Wetting boundary conditions for multicomponent pseudopotential lattice Boltzmann

被引:13
作者
Coelho, Rodrigo C. V. [1 ,2 ]
Moura, Catarina B. [1 ]
Telo da Gama, Margarida M. [1 ,2 ]
Araujo, Nuno A. M. [1 ,2 ]
机构
[1] Univ Lisbon, Fac Ciencias, Ctr Fis Teor & Computac, P-1749016 Lisbon, Portugal
[2] Univ Lisbon, Dept Fis, Fac Ciencias, Lisbon, Portugal
关键词
binary fluids; coalescence; lattice Boltzmann; pseudopotential; wetting;
D O I
10.1002/fld.4988
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The implementation of boundary conditions is among the most challenging parts of modeling fluid flow through channels and complex media. Here, we show that the existing methods to deal with liquid-wall interactions using multicomponent Lattice Boltzmann are accurate when the wall is aligned with the main axes of the lattice but fail otherwise. To solve this problem, we extend a strategy previously developed for multiphase models. As an example, we study the coalescence of two droplets on a curved surface in two dimensions. The strategy proposed here is of special relevance for binary flows in complex geometries.
引用
收藏
页码:2570 / 2580
页数:11
相关论文
共 49 条
  • [1] Hydrodynamics of droplet coalescence
    Aarts, DGAL
    Lekkerkerker, HNW
    Guo, H
    Wegdam, GH
    Bonn, D
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (16)
  • [2] Wetting boundary condition for the color-gradient lattice Boltzmann method: Validation with analytical and experimental data
    Akai, Takashi
    Bijeljic, Branko
    Blunt, Martin J.
    [J]. ADVANCES IN WATER RESOURCES, 2018, 116 : 56 - 66
  • [3] A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications
    Chen, Li
    Kang, Qinjun
    Mu, Yutong
    He, Ya-Ling
    Tao, Wen-Quan
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2014, 76 : 210 - 236
  • [4] Capillary filling with pseudo-potential binary Lattice-Boltzmann model
    Chibbaro, S.
    [J]. EUROPEAN PHYSICAL JOURNAL E, 2008, 27 (01) : 99 - 106
  • [5] Lattice Boltzmann method for semiclassical fluids
    Coelho, Rodrigo C. V.
    Doria, Mauro M.
    [J]. COMPUTERS & FLUIDS, 2018, 165 : 144 - 159
  • [6] Experimental and numerical investigation of binary coalescence: Liquid bridge building and internal flow fields
    Eiswirth, R. T.
    Bart, H. -J.
    Ganguli, A. A.
    Kenig, E. Y.
    [J]. PHYSICS OF FLUIDS, 2012, 24 (06)
  • [7] Modeling realistic multiphase flows using a non-orthogonal multiple-relaxation-time lattice Boltzmann method
    Fei, Linlin
    Du, Jingyu
    Luo, Kai H.
    Succi, Sauro
    Lauricella, Macro
    Montessori, Andrea
    Wang, Qian
    [J]. PHYSICS OF FLUIDS, 2019, 31 (04)
  • [8] A two-dimensional modeling of binary coalescence time using the two-color lattice-Boltzmann method
    Gac, Jakub M.
    Gradon, Leon
    [J]. JOURNAL OF AEROSOL SCIENCE, 2011, 42 (05) : 355 - 363
  • [9] Simulation of high-viscosity-ratio multicomponent fluid flow using a pseudopotential model based on the nonorthogonal central-moments lattice Boltzmann method
    Gharibi, Farshad
    Ashrafizaadeh, Mahmud
    [J]. PHYSICAL REVIEW E, 2020, 101 (04)
  • [10] Viscous coalescence of droplets: A lattice Boltzmann study
    Gross, M.
    Steinbach, I.
    Raabe, D.
    Varnik, F.
    [J]. PHYSICS OF FLUIDS, 2013, 25 (05)