The black fringe wavefront sensor: White light real time analog phase control

被引:0
|
作者
Tansey, Richard J. [1 ]
Honkan, Avinash A. [1 ]
Chan, Henry M. [1 ]
机构
[1] Lockheed Martin, Ctr Adv Technol, 3251 Hanover St, Palo Alto, CA 94304 USA
来源
FREE-SPACE LASER COMMUNICATION TECHNOLOGIES XIX AND ATMOSPHERIC PROPAGATION OF ELECTROMAGNETIC WAVES | 2007年 / 6457卷
关键词
wavefront; black fringe; white-light; adaptive optics; radial shear interferometer;
D O I
10.1117/12.701472
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
White light interferometry techniques to obtain 3D surface profiles or rms surface roughness measurements for microscopic instruments are used to develop an adaptive optics wavefront sensor for long range correction of lasers and images. Combining these techniques with a high power incoherent or multiline laser and a radial shear interferometer, a black fringe wavefront sensor (bfwfs) has been developed over the last two years at Lockheed Martin's Advanced technology Center. The bfwfs will be described, and results of recent tests shown using a 16 channel device. The 16 ch system is used to obtain measurements of open loop influence functions, and closed loop Bode plots using a Mems mirror. The bfwfs device can be used for adaptive optics at long ranges on weight or volume limited platforms because it allows high power incoherent lasers or other broadband sources to be combined with a parallel architecture and inherently analog servo system. Results are reported in which a superluminescent laser diode (SLD) and a multiline cw Argon laser are combined with a radial shear interferometer to measure phase at 200 Hz with 1/20 pv accuracy.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] White light wavefront control with a spatial light modulator
    Spangenberg, Dirk-Mathys
    Dudley, Angela
    Neethling, Pieter H.
    Rohwer, Erich G.
    Forbes, Andrew
    OPTICS EXPRESS, 2014, 22 (11): : 13870 - 13879
  • [2] A high QE fast readout wavefront sensor with analog phase reconstruction
    Baker, JT
    Loos, G
    Restaino, S
    Percheron, I
    Finkner, L
    ADAPTIVE OPTICAL SYSTEM TECHNOLOGIES, PARTS 1 AND 2, 1998, 3353 : 972 - 982
  • [3] WHITE-LIGHT INTERFEROMETER FOR REAL-TIME PHASE PSEUDOCOLORING
    TORROBA, RD
    ARIZAGA, R
    OPTICS COMMUNICATIONS, 1987, 64 (03) : 221 - 223
  • [4] Real-time vibration amplitude/phase imager using white-light interferometer and correlation image sensor
    Sato S.
    Kurihara T.
    Ando S.
    IEEJ Transactions on Sensors and Micromachines, 2010, 130 (01) : 17 - 24
  • [5] A FRINGE CONTROL METHOD FOR REAL-TIME HNDT
    PAOLETTI, D
    AMADESI, S
    DALTORIO, A
    OPTICS COMMUNICATIONS, 1984, 49 (02) : 98 - 102
  • [6] Real time phase compensation using a Tomographical Pupil Image Wavefront Sensor (TPI-WFS)
    Fernandez-Valdivia, J. J.
    Trujillo-Sevilla, J. M.
    Casanova-Gonzalez, O.
    Lopez, R. L.
    Velasco, S.
    Colodro-Conde, C.
    Puga, M.
    Oscoz, A.
    Rebolo, R.
    Mackay, C.
    Perez-Garrido, A.
    Rodriguez-Ramos, L. F.
    King, D.
    Labadie, L.
    Muthusubramanian, B.
    Rodriguez-Coira, G.
    Rodriguez-Ramos, J. M.
    2016 15TH WORKSHOP ON INFORMATION OPTICS (WIO), 2016,
  • [7] Adaptive phase control of a phase-only spatial light modulator using the Shack-Hartmann wavefront sensor
    Abdelazeem, Rania M.
    Ahmed, Mahmoud M. A.
    Hassab-Elnaby, Salah
    Agour, Mostafa
    APPLIED OPTICS, 2024, 63 (28) : G54 - G62
  • [8] White light wavefront measuring system using geometric phase stepping
    Barron, RJ
    Somervell, ARD
    Barnes, TH
    Cheung, DCL
    JOURNAL OF MODERN OPTICS, 2004, 51 (01) : 1 - 11
  • [9] Phase-crossing algorithm for white-light fringe analysis
    Pawlowski, ME
    Sakano, Y
    Miyamoto, Y
    Takeda, M
    2005 PACIFIC RIM CONFERENCE ON LASERS AND ELECTRO-OPTICS, 2005, : 1010 - 1011
  • [10] FPGA-based real time processing of the Plenoptic Wavefront Sensor
    Rodriguez-Ramos, L. F.
    Martin, Y.
    Diaz, J. J.
    Piqueras, J.
    Garcia-Jimenez, J.
    Rodriguez-Ramos, J. M.
    1ST AO4ELT CONFERENCE - ADAPTIVE OPTICS FOR EXTREMELY LARGE TELESCOPES, 2009,