18S rRNA V9 metabarcoding for diet characterization: a critical evaluation with two sympatric zooplanktivorous fish species

被引:94
作者
Albaina, Aitor [1 ]
Aguirre, Mikel [1 ]
Abad, David [1 ]
Santos, Maria [2 ]
Estonba, Andone [1 ]
机构
[1] Univ Basque Country UPV EHU, Genet Lab, Dept Genet Phys Anthropol & Anim Physiol, Leioa 48940, Spain
[2] AZTI Tecnalia, Div Marine Res, POB 20110, Pasaia, Gipuzkoa, Spain
关键词
18S rRNA V9; diet analysis; metabarcoding; MiSeq paired-end technology; plankton; Sardina pilchardus; Sprattus sprattus; SARDINA-PILCHARDUS; COPY NUMBER; DNA; BIODIVERSITY; BAY; IDENTIFICATION; COMMUNITIES; SENSITIVITY; DIVERSITY; PREDATION;
D O I
10.1002/ece3.1986
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The potential of the 18S rRNA V9 metabarcoding approach for diet assessment was explored using MiSeq paired-end (PE; 2 9 150 bp) technology. To critically evaluate the method's performance with degraded/digested DNA, the diets of two zooplanktivorous fish species from the Bay of Biscay, European sardine (Sardina pilchardus) and European sprat (Sprattus sprattus), were analysed. The taxonomic resolution and quantitative potential of the 18S V9 metabarcoding was first assessed both in silico and with mock and field plankton samples. Our method was capable of discriminating species within the reference database in a reliable way providing there was at least one variable position in the 18S V9 region. Furthermore, it successfully discriminated diet between both fish species, including habitat and diel differences among sardines, overcoming some of the limitations of traditional visual-based diet analysis methods. The high sensitivity and semi-quantitative nature of the 18S V9 metabarcoding approach was supported by both visual microscopy and qPCR-based results. This molecular approach provides an alternative cost and time effective tool for food-web analysis.
引用
收藏
页码:1809 / 1824
页数:16
相关论文
共 76 条
[31]   Characterization of the 18S rRNA Gene for Designing Universal Eukaryote Specific Primers [J].
Hadziavdic, Kenan ;
Lekang, Katrine ;
Lanzen, Anders ;
Jonassen, Inge ;
Thompson, Eric M. ;
Troedsson, Christofer .
PLOS ONE, 2014, 9 (02)
[32]   Building Phylogenetic Trees from Molecular Data with MEGA [J].
Hall, Barry G. .
MOLECULAR BIOLOGY AND EVOLUTION, 2013, 30 (05) :1229-1235
[33]   A metagenetic approach for revealing community structure of marine planktonic copepods [J].
Hirai, J. ;
Kuriyama, M. ;
Ichikawa, T. ;
Hidaka, K. ;
Tsuda, A. .
MOLECULAR ECOLOGY RESOURCES, 2015, 15 (01) :68-80
[34]  
ICES, 2010, 2010SSGESST24 ICES C
[35]   Molecular taxonomic identification in the absence of a 'barcoding gap': a test with the endemic flora of the Canarian oceanic hotspot [J].
Jaen-Molina, Ruth ;
Marrero-Rodriguez, Aguedo ;
Alfredo Reyes-Betancort, J. ;
Santos-Guerra, Arnoldo ;
Naranjo-Suarez, Jose ;
Caujape-Castells, Juli .
MOLECULAR ECOLOGY RESOURCES, 2015, 15 (01) :42-56
[36]   Adelie Penguin Population Diet Monitoring by Analysis of Food DNA in Scats [J].
Jarman, Simon N. ;
McInnes, Julie C. ;
Faux, Cassandra ;
Polanowski, Andrea M. ;
Marthick, James ;
Deagle, Bruce E. ;
Southwell, Colin ;
Emmerson, Louise .
PLOS ONE, 2013, 8 (12)
[37]  
Joshi NA., 2011, Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files Software, DOI DOI 10.1016/J.YMETH.2016.02.020
[38]   Molecular analysis of predation: a review of best practice for DNA-based approaches [J].
King, R. A. ;
Read, D. S. ;
Traugott, M. ;
Symondson, W. O. C. .
MOLECULAR ECOLOGY, 2008, 17 (04) :947-963
[39]   Comparison of molecular species identification for North Sea calanoid copepods (Crustacea) using proteome fingerprints and DNA sequences [J].
Laakmann, S. ;
Gerdts, G. ;
Erler, R. ;
Knebelsberger, T. ;
Arbizu, P. Martinez ;
Raupach, M. J. .
MOLECULAR ECOLOGY RESOURCES, 2013, 13 (05) :862-876
[40]   Coherence of long-term variations of zooplankton in two sectors of the California Current System [J].
Lavaniegos, Bertha E. ;
Ohman, Mark D. .
PROGRESS IN OCEANOGRAPHY, 2007, 75 (01) :42-69