Growth of entire functions with given zeros and representation of meromorphic functions

被引:2
作者
Khabibullin, BN [1 ]
机构
[1] Bashkir State Univ, Ufa 450074, Russia
关键词
entire function; meromorphic function; subharmonic function; Nevanlinna characteristic; zero sequence; Lindelof theorem;
D O I
10.1023/A:1022182219464
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A = {lambda(n)} be a sequence of points on the complex plane, and let A(r) be the number of points of the sequence A in the disk {\z\ < r }. We study the following problem in terms of the counting function A(r): what is the minimal possible growth of the characteristic M-f (r) = max{\f (z)\: \z\ = r} in the class of all entire functions f vanishing on A? Let F be a meromorphic function in C. In terms of the Nevanlinna characteristic TF(r) of the function F, we estimate the minimal possible growth of the characteristics Mg(r) and M-h(r) in the class of all pairs of entire functions g and h such that F = g/h. We present analogs of the obtained results for holomorphic and meromorphic functions in the unit disk in the complex plane.
引用
收藏
页码:110 / 124
页数:15
相关论文
共 16 条
[1]  
[Anonymous], 1985, VALUE DISTRIBUTION T
[2]  
Goldberg A. A., 2008, VALUE DISTRIBUTION M
[3]  
Hayman W. K., 1976, Subharmonic Functions
[4]  
KHABIBULLIN BN, 1991, IZV AKAD NAUK SSSR M, V55, P1101
[5]  
KHABIBULLIN BN, 1993, IZV MATH+, V57, P129
[6]  
KHABIBULLIN BN, 1997, P ISRAEL MATH C ENT
[7]  
KOOSIS P, 1996, LECONS THEOREME BEUR
[8]  
Lelong P., 1986, Entire functions of several complex variables
[9]   QUOTIENT REPRESENTATIONS OF MEROMORPHIC FUNCTIONS [J].
MILES, J .
JOURNAL D ANALYSE MATHEMATIQUE, 1972, 25 :371-&
[10]  
RUBEL LA, 1968, B SOC MATH FR, V96, P53