The homotopy types of SO(4)-gauge groups

被引:0
作者
Kishimoto, Daisuke [1 ]
Membrillo-Solis, Ingrid [2 ]
Theriault, Stephen [2 ]
机构
[1] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
[2] Univ Southampton, Math Sci, Southampton SO17 1BJ, Hants, England
基金
英国工程与自然科学研究理事会;
关键词
SO(4); Gauge group; Homotopy type;
D O I
10.1007/s40879-021-00453-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The homotopy types of gauge groups of principal SO(4)-bundles over S-4 are classified p-locally for every prime p, and partial results are obtained integrally. The method generalizes to deal with any quotient of the form (S-3)(n)/Z where Z is a subgroup generated by (-1, ... ,-1).
引用
收藏
页码:1245 / 1252
页数:8
相关论文
共 11 条
[1]   THE YANG-MILLS EQUATIONS OVER RIEMANN SURFACES [J].
ATIYAH, MF ;
BOTT, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 308 (1505) :523-615
[2]   Counting homotopy types of gauge groups [J].
Crabb, MC ;
Sutherland, WA .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2000, 81 :747-768
[3]   THE HOMOTOPY TYPES OF U(n)-GAUGE GROUPS OVER S4 AND CP2 [J].
Cutler, Tyrone .
HOMOLOGY HOMOTOPY AND APPLICATIONS, 2018, 20 (01) :5-36
[4]   APPLICATIONS OF BUNDLE MAP THEORY [J].
GOTTLIEB, DH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 171 (SEP) :23-50
[5]   Unstable K1-group and homotopy type of certain gauge groups [J].
Hamanaka, H ;
Kono, A .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2006, 136 :149-155
[6]   The homotopy types of PU(3)- and PSp(2)-gauge groups [J].
Hasui, Sho ;
Kishimoto, Daisuke ;
Kono, Akira ;
Sato, Takashi .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2016, 16 (03) :1813-1825
[7]   Samelson products of SO(3) and applications [J].
Kamiyama, Yasuhiko ;
Kishimoto, Daisuke ;
Kono, Akira ;
Tsukuda, Shuichi .
GLASGOW MATHEMATICAL JOURNAL, 2007, 49 :405-409
[8]   The homotopy types of G2-gauge groups [J].
Kishimoto, Daisuke ;
Theriault, Stephen ;
Tsutaya, Mitsunobu .
TOPOLOGY AND ITS APPLICATIONS, 2017, 228 :92-107
[9]   A NOTE ON THE HOMOTOPY TYPE OF CERTAIN GAUGE GROUPS [J].
KONO, A .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1991, 117 :295-297
[10]   The homotopy types of Sp(2)-gauge groups [J].
Theriault, Stephen D. .
KYOTO JOURNAL OF MATHEMATICS, 2010, 50 (03) :591-605