An Overlapping Domain Decomposition Method Based on Calderon Preconditioned CFIE

被引:1
作者
Zhu, Guang-Yu [1 ]
Zhou, Hou-Xing [1 ]
Hong, Wei [1 ]
机构
[1] Southeast Univ, State Key Lab Millimeter Waves, Nanjing 210096, Jiangsu, Peoples R China
来源
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS | 2019年 / 18卷 / 09期
基金
美国国家科学基金会;
关键词
Calderon preconditioner; domain decomposition method; integral equation; ELECTROMAGNETIC SCATTERING; COMPLEX; ALGORITHM;
D O I
10.1109/LAWP.2019.2928521
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, an overlapping domain decomposition method (ODDM) based on the Calderon preconditioned combined field integral equation (CP-CFIE) is proposed. In contrast to previous ODDM using the combined field integral equation (CFIE), the proposed method possesses excellent robustness in the case of multiscale discretization. Several numerical examples are provided to demonstrate the correctness and performance of the proposed method.
引用
收藏
页码:1731 / 1735
页数:5
相关论文
共 50 条
  • [31] A Domain Decomposition Method Based on Augmented Lagrangian with a Penalty Term
    Lee, Chang-Ock
    Park, Eun-Hee
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XVIII, 2009, 70 : 339 - 346
  • [32] A quasi-optimal non-overlapping domain decomposition method for two-dimensional time-harmonic elastic wave problems
    Mattesi, V
    Darbas, M.
    Geuzaine, C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 401 (401)
  • [33] A non-overlapping Schwarz domain decomposition method with high-order finite elements for flow acoustics
    Lieu, Alice
    Marchner, Philippe
    Gabard, Gwenael
    Beriot, Hadrien
    Antoine, Xavier
    Geuzaine, Christophe
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 369
  • [34] A Novel Domain Decomposition Method for General Composite Objects
    Guo, Lan-Wei
    Chen, Yongpin
    Hu, Jun
    Zhao, Ran
    Li, Joshua Le-Wei
    Nie, Zaiping
    2016 IEEE INTERNATIONAL WORKSHOP ON ELECTROMAGNETICS: APPLICATIONS AND STUDENT INNOVATION COMPETITION (IWEM), 2016,
  • [35] A GenEO Domain Decomposition method for Saddle Point problems
    Nataf, Frederic
    Tournier, Pierre-Henri
    COMPTES RENDUS MECANIQUE, 2023, 351
  • [36] DOMAIN DECOMPOSITION METHOD FOR CRACK PROBLEMS WITH NONPENETRATION CONDITION
    Rudoy, Evgeny
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (04): : 995 - 1009
  • [37] The Dual, Overlapping Primal FETI (FETI-DOP) Domain Decomposition
    Paraschos, Georgios N.
    Vouvakis, Marinos N.
    2011 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (APSURSI), 2011, : 2976 - 2979
  • [38] A Domain Decomposition of the Finite Element-Boundary Integral Method for Scattering by Multiple Objects
    Cui, Zhiwei
    Han, Yiping
    Ai, Xia
    Zhao, Wenjuan
    ELECTROMAGNETICS, 2011, 31 (07) : 469 - 482
  • [39] Calderon Preconditioned Spectral-Element Spectral-Integral Method for Doubly Periodic Structures in Layered Media
    Mao, Yiqian
    Niu, Jun
    Zhan, Qiwei
    Zhang, Runren
    Huang, Wei-Feng
    Liu, Qing Huo
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2020, 68 (07) : 5524 - 5533
  • [40] A FAST DOMAIN DECOMPOSITION METHOD BASED ON ORTHOGONAL POLYNOMIALS APPROXIMATION FOR SOLVING ELECTROMAGNETIC SCATTERING PROBLEMS
    Lue, Zhi-Qing
    An, Xiang
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2011, 53 (02) : 357 - 361